Reachability tape of J-net simulating the application of selection sequence optimization algorithm to single problem
- Authors: Dimitriev A.P.1, Lavina T.A.1, Bazhenov R.I.2, Kopysheva T.N.1
-
Affiliations:
- Chuvash State University
- Sholom-Aleichem Priamursky State University
- Issue: Vol 27, No 4 (2025)
- Pages: 517-538
- Section: Mathematical modeling and computer science
- Submitted: 13.01.2026
- Accepted: 13.01.2026
- Published: 13.01.2026
- URL: https://journals.rcsi.science/2079-6900/article/view/365549
- DOI: https://doi.org/10.15507/2079-6900.27.202504.517-538
- ID: 365549
Cite item
Full Text
Abstract
About the authors
Alexander P. Dimitriev
Chuvash State University
Email: dimitrie1@yandex.ru
ORCID iD: 0000-0002-7345-9790
Ph.D. (Engineering), Associate professor
Russian Federation, 15 Moskovsky av., Cheboksary 428015, RussiaTatyana A. Lavina
Chuvash State University
Email: tlavina@mail.ru
ORCID iD: 0000-0002-7622-2246
Dr. Sci. (Pedagogy), Head of Department of Computer Technologies
Russian Federation, 15 Moskovsky av., Cheboksary 428015, RussiaRuslan I. Bazhenov
Sholom-Aleichem Priamursky State University
Email: r-i-bazhenov@yandex.ru
ORCID iD: 0000-0003-2668-1142
Ph. D. (Pedagogy), Head Department of Information Systems, Mathematics and Legal Informatics
Russian Federation, 70a Shirokaya St., Birobidzhan 679015, RussiaTatyana N. Kopysheva
Chuvash State University
Author for correspondence.
Email: tn_pavlova@mail.ru
ORCID iD: 0000-0003-3392-1431
Ph. D. (Phys.-Math.), Head of Department of Mathematical and Hardware Support for Information Systems
Russian Federation, 15 Moskovsky av., Cheboksary 428015, RussiaReferences
- J. E. McEneaney, P. Morsink, ''Curriculum Modelling and Learner Simulation as a Tool in Curriculum (Re)Design'', J. Learn. Anal., 9:2 (2022), 161-178. doi: 10.18608/jla.2022.7499
- L. Nyeki, ''Modeling of Higher Education Processes using Colored Petri Nets'', XXVIII Multimedia in Education International Conference, 2022, 62--68, Available at: https://www.researchgate.net/publication/377218660_Modeling_of_Higher_Education_Processes_using_Colored_Petri_Nets.
- P. Castaldi, N. Mimmo, ''Representing the dynamics of student learning and interactions with a university curriculum'', IFAC-PapersOnLine, 58:16 (2024). doi: 10.1016/j.ifacol.2024.08.488
- S. Vanit-Anunchai, ''Teaching Low-Code Formal Methods with Coloured Petri Nets'', Formal Methods Teaching Workshop, Springer, 2023, 96-104 doi: 10.1007/978-3-031-27534-0.
- J. Rong, ''A Practical Exploration of the Integration of Civics into Student Education and Management in Colleges and Universities Empowered by Information Integration Technology in the Context of Three-Whole Parenting'', Applied Mathematics and Nonlinear Sciences, 9:1 (2024), 1—18, Available at:
- https://sciendo.com/article/10.2478/amns.2023.2.01398.
- L. Huang, J. Zheng, S. P. Lajoie, Y. Chen, C. E. Hmelo Silver, M. Wang, ''Examining university teachers' self-regulation in using a learning analytics dashboard for online collaboration'', Educ Inf Technol, 29 (2024), 8523-8547. doi: 10.1007/s10639-023-12131-7
- L. Nyeki, ''The Application of Petri Nets in Modeling the Educational Process'', X. Agoston Trefort Conference., Budapest, 2020, 202—213, Available at: https://www.researchgate.net/publication/377218178.
- S. A. Iuditskii, ''The Scenary Approach to the Logical Modeling of Systems of a Market Economy'', Sistemy upravleniya, svyazi i bezopasnosti, 2015, no. 2, 147—164 (In Russ.), Available at: https://sccs.intelgr.com/archive/2015-02/06-Iuditskii.pdf.
- P. V. Zheltov, ''[Models for searching and copying symbol data on J-nets]'', Prikladnaya informatika, 4:40 (2012), 81–87 (In Russ.).
- A. P. Dimitriev, T. A. Lavina, ''Application of the selection sequence optimization algorithm to distribute the teacher's educational load according to individual plans'', Sovremennye naukoemkie tekhnologii, 2024, no. 4, 15–20 (In Russ.). doi: 10.17513/snt.39967
- G. P. Vinogradov, N. V. Kirsanova, ''[Interactive model planning of the load between the staff of the chairs]'', Vestnik Tverskogo gosudarstvennogo tekhnicheskogo universiteta, 2017, no. 32, 106–111 (In Russ.), Available at: https://core.ac.uk/reader/151241237.
- D. A. Ivakhnenko, ''[Application of the twosided markets theory for university department teaching workload distribution]'', Sovremennaya ekonomika: problemy i resheniya, 9:141 (2021), 16--28 (In Russ.). doi: 10.17308/meps.2021.9/2667
- S. N. Sultanova, S. V. Tarkhov, ''[Models and algorithms of desizion support at teachers' educational load distribution]'', Vestnik Ufimskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta, 7:3 (16) (2006), 107–114 (In Russ.), Available at: https://elibrary.ru/item.asp?id=9289661.
- A. P. Dimitriev, T. A. Lavina, ''Algorithm for distributing the teacher's educational load according to individual plans using artificial intelligence technology'', Sovremennye naukoemkie tekhnologii, 2023, no. 5, 13–18 (In Russ.). DOI: https://doi.org/10.17513/snt.39610
- D. Whitley, ''A genetic algorithm tutorial'', Stat Comput, 4 (1994), 65–85. doi: 10.1007/BF00175354
- A. P. Dimitriev, R. I. Bazhenov, ''Time indicators of effective optimization algorithms in group load control modeling'', IOP Conf. Ser.: Mater. Sci. Eng., 1019 (2021), 012038. doi: 10.1088/1757-899X/1019/1/012038
- S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, ''Optimization by Simulated Annealing'', Science, 220:4598 (1983), 671–680. doi: 10.1126/science.220.4598.671
- V. E. Kotov, [Petri Nets], Nauka Publ., Moscow, 1984 (In Russ.), 160 p.
- Yu. G. Evtushenko, M. A. Posypkin, L. A. Rybak, A. V. Turkin, ''Finding sets of solutions to systems of nonlinear inequalities'', Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki, 57:8 (2017), 1248–1254 (In Russ.). doi: 10.7868/S0044466917080075
- I. I. Lapikov, V. G. Nikonov, ''[Adaptive algorithm for solving systems of inequalities with k-valued unknowns]'', Trudy Voenno-kosmicheskoy akademii imeni A.F.Mozhayskogo, 2016, no. 650, 88–94 (In Russ.).
Supplementary files


