Method for calculating radiative energy transfer in the “back and forth” approximation
- Authors: Krukovskiy A.J.1, Ladonkina M.E.1, Poveshchenko Y.A.1, Popov I.V.1
-
Affiliations:
- Keldysh Institute of Applied Mathematics of Russian Academy of Sciences
- Issue: Vol 24, No 4 (2022)
- Pages: 436-451
- Section: Applied mathematics and mechanics
- Published: 23.11.2022
- URL: https://journals.rcsi.science/2079-6900/article/view/366801
- DOI: https://doi.org/10.15507/2079-6900.24.202204.436-451
- ID: 366801
Cite item
Full Text
Abstract
This paper presents a method for calculating the radiative energy transfer in the back and forth approximation for the case of cylindrically symmetric currents. The key element of the method is the scheme for calculating radiative heat transfer in a medium with opacity that strongly varies in space and time. The paper discusses the possibility of improving accuracy of solving a difference equations’ system by making the approximation of absorption coefficients more accurate. The numerical technique proposed for multi-parameter computing experiments makes it possible to obtain the radiation energy density as a quadrature of plasma opacity and emissivity. In two-temperature model of gas dynamics and magnetohydrodynamics, this determines the contribution of radiative heat transfer into the energy balance of the plasma electronic component. Numerical comparison of the proposed method with some diffusion methods was implemented via test examples simulating spatial inhomogeneity of the radiation field. It is shown that the calculations performed according to the methodology considered in this paper, give a qualitatively correct match with the analytical solution of the problem, in contrast to calculations performed by the method of diffuse approximation. The obvious advantage of the back and forth approximation is that integrality is inherent in its structure.
About the authors
Alexander Ju. Krukovskiy
Keldysh Institute of Applied Mathematics of Russian Academy of Sciences
Email: alexander-krukovskiy@yandex.ru
ORCID iD: 0000-0003-4188-6904
D. Sci. (Physics and Mathematics)
Russian Federation, 4 Miusskaya Sq., Moscow 125047, RussiaMarina E. Ladonkina
Keldysh Institute of Applied Mathematics of Russian Academy of Sciences
Author for correspondence.
Email: ladonkina@imamod.ru
ORCID iD: 0000-0001-7596-1672
Ph. D. (Physics andMathematics), Senior Researcher
Russian Federation, 4 Miusskaya Sq., Moscow 125047, RussiaYuri A. Poveshchenko
Keldysh Institute of Applied Mathematics of Russian Academy of Sciences
Email: hecon@mail.ru
ORCID iD: 0000-0001-9211-9057
Dr. Sci. (Physics and Mathematics), Leading Researcher
Russian Federation, 4 Miusskaya Sq., Moscow 125047, RussiaIgor V. Popov
Keldysh Institute of Applied Mathematics of Russian Academy of Sciences
Email: piv2964@mail.ru
ORCID iD: 0000-0002-7347-8174
Ph. D. (Physics and Mathematics), Senior Researcher
Russian Federation, 4 Miusskaya sq., Moscow, 125047References
- S. B. Hansen, M. R. Gomez, A. B. Sefkow, S. A. Slutz, D. B. Sinars, K. D. Hahn, E. C. Harding, P. F. Knapp, P. F. Schmit, T. J. Awe, R. D. McBride, C. A. Jennings, M. Geissel, A. J. Harvey-Thompson, K. J. Peterson, D. C. Rovang, G. A. Chandler, G. W. Cooper, M. E. Cuneo, M. C. Herrmann, M. H. Hess, O. Johns, D. C. Lamppa, M.
- R. Martin, J. L. Porter, G. K. Robertson, G. A. Rochau, C. L. Ruiz, M. E. Savage, I. C. Smith, W. A. Stygar, R. A. Vesey, B. E. Blue, D. Ryutov, D. G. Schroen, K. Tomlinson, “Diagnosing magnetized liner inertial fusion experiments on Z”, Physics of Plasmas, 22 (2015). DOI: https://doi.org/10.1063/1.4921217
- A. J. Gonsalves, K. Nakamura, J. Daniels, C. Benedetti, C. Pieronek, T. C. H. de Raadt, S. Steinke, J. H. Bin, S. S. Bulanov, J. van Tilborg, C. G. R. Geddes, C. B. Schroeder, Cs. TOth, E. Esarey, K. Swanson, L. Fan-Chiang, G. Bagdasarov, N. Bobrova, V. Gasilov, G. Korn, P. Sasorov, W. P. Leemans, “Petawatt laser
- guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide”, Physical Review Letters, 122:8 (2019).
- Ya. B. Zeldovich, Yu. P. Raiser, Physics of shock waves and high-temperature hydrodynamic phenomena, Fismatlit Publ., Moscow, 2008 (In Russ.), 653 p.
- M. N. Oscik, Complex heat transfer, Mir Publ., Moscow, 1976 (In Russ.), 305 p.
- V. A. Gasilov, S. V. Zakharov, V. P. Smirnov, “Generation of intense radiation fluxes and megabar pressures in liner systems”, Letters to the JETPh, 53:2 (1991), 83–86 (In Russ.).
- V. A. Gasilov, S. V. Zakharov, A. Yu. Krukovsky, K. V. Skorovarov, “Generation of intense radiation fluxes and megabar shock waves by compressing liners”, Plasma Physics, 21:5 (1995), 399–406 (In Russ.).
- V. A. Gasilov, A. Yu. Krukovsky, “On the calculation of radiant heat transfer in a composite Z-pinch”, Matem. modelirovaniye, 34:9 (2022), 21–36 (In Russ.). DOI: https://doi.org/10.20948/mm-2022-09-02
- B. N. Chetverushkin, Mathematical simulation of radiating gas dynamics problems, Nauka Publ., Moscow, 1985 (In Russ.), 304 p.
- A. D. Rekin, “Radiation transfer equations in the Schuster-Schwarzschild approximation for problems with spherical and cylindrical symmetry”, TVT, 16:4 (1978), 811–818 (In Russ.).
- G. S. Romanov, A. S. Smetannikov, “Numerical modeling of a layered pulsed discharge taking into account the transfer of radiation energy”, JTPh, 52:9 (1982), 1756–1762 (In Russ.).
Supplementary files


