Continuous global optimization of multivariable functions based on Sergeev and Kvasov diagonal approach
- Authors: Zabotin V.I.1, Chernyshevskij P.A.1
-
Affiliations:
- Tupolev Kazan National Research Technical University – KAI
- Issue: Vol 24, No 4 (2022)
- Pages: 399-418
- Section: Mathematics
- Published: 23.11.2022
- URL: https://journals.rcsi.science/2079-6900/article/view/366416
- DOI: https://doi.org/10.15507/2079-6900.24.202204.399-418
- ID: 366416
Cite item
Full Text
Abstract
One of modern global optimization algorithms is method of Strongin and Piyavskii modified by Sergeev and Kvasov diagonal approach. In recent paper we propose an extension of this approach to continuous multivariable functions defined on the multidimensional parallelepiped. It is known that Sergeev and Kvasov method applies only to a Lipschitz continuous function though it effectively extends one-dimensional algorithm to multidimensional case. So authors modify We modify mentioned method to a continuous functions using introduced by Vanderbei ε-Lipschitz. Because multidimensional parallelepiped is a convex compact set, we demand objective function to be only continuous on a search domain. We describe extended Strongin’s and Piyavskii’s methods in the Sergeev and Kvasov modification and prove the sufficient conditions for the convergence. As an example of proposed method’s application, at the end of this article we show numerical optimization results of different continuous but not Lipschitz functions using three known partition strategies: “partition on 2”, “partition on 2N” and “effective”. For the first two of them we present formulas for computing a new iteration point and for recalculating the ε-Lipschitz constant estimate. We also show algorithm modification that allows to find a new search point on any algorithm’s step.
About the authors
Vladislav I. Zabotin
Tupolev Kazan National Research Technical University – KAI
Email: v.zabotin@rambler.ru
ORCID iD: 0000-0002-0732-5380
Doctor of Technical Science, Professor, Department of Applied Mathematics and Informatics
Russian Federation, 55 Bolshaya Krasnaya St., Kazan 420015, RussiaPavel A. Chernyshevskij
Tupolev Kazan National Research Technical University – KAI
Author for correspondence.
Email: pavelcomm@mail.ru
ORCID iD: 0000-0001-5036-6375
Postgraduate Student, Department of Applied Mathematics and Informatics
Russian Federation, 55 Bolshaya Krasnaya St., Kazan 420015, RussiaReferences
- S. A. Piyavskii, “An algorithm for finding the absolute extremum of a function”, Teoriya optimalnykh resheniy, 2 (1967), 13–24 (In Russ.).
- S. A. Piyavskii, “An algorithm for finding the absolute extremum of a function”, USSR Computational Mathematics and Mathematical Physics, 12:4 (1972), 57–67885–896 (In Russ.). DOI: https://doi.org/10.1016/0041-5553(72)90115-2
- Yu. G. Evtushenko, “Numerical method for finding the global extremum of a function (iteration on an uneven grid)”, USSR Computational Mathematics and Mathematical Physics, 11:6 (1971), 38–54 (In Russ.). DOI: https://doi.org/10.1016/0041-5553(71)90065-6 1390–1703
- B. Shubert, “A sequential method seeking the global maximum of a function”, SIAM J. Numer. Anal., 9:3 (1972), 379-388.
- R. G. Strongin, [Numerical methods in multiextremal problems], Nauka Publ., Moscow, 1978 (In Russ.), 240 p.
- Ya. D. Sergeev, D. E. Kvasov, [Diagonal methods of global optimization], Fizmatlit Publ., Moscow, 2008 (In Russ.), 352 p.
- B. R. Gelbaum, J. M. H. Olmsted, Counterexamples in analysis, Holden-Day, Inc., San Francisco, 1967, 251 p.
- R. J. Vanderbei, “Extension of Piyavskii’s algorithm to continuous global optimization”, Journal of Global Optimization, 14 (1999), 205-216. DOI: https://doi.org/10.1023/A:1008395413111
- S. Romaguera, M. Sanchis, “Semi-Lipschitz functions and best approximation in quasi-metric space”, J. Approx. Theory, 103:32 (2000), 292–301. DOI: https://doi.org/10.1006/jath.1999.3439
- E. Jouini, “Generalized Lipschitz functions”, Nonlinear Anal., 41 (2000), 371-382.
- M. A. Sadygov, “[Extremum problems with constraints in metric space]”, Doklady akademii nauk, 52:5 (2013), 490–493 (In Russ.). DOI: https://doi.org/10.7868/S0869565213300075
- Y. D. Sergeyev, A. Candelieri, D. E. Kvasov, R. Perego et al., “Safe global optimization of expensive noisy black-box functions in the δ-Lipschitz framework”, Soft. Comput., 24 (2020), 17715-17735. DOI: https://doi.org/10.1007/s00500-020-05030-3
- V. I. Zabotin, P. A. Chernyshevskij, “Two modifications of extension of Piyavskii’s global optimization algorithm to a function continuous on a compact interval and its convergence”, Herald of Tver State University. Series: Applied Mathematics, 3 (2021), 70-85 (In Russ.). DOI: https://doi.org/10.26456/vtpmk624
- N. K. Arutyunova, “[Yevtushenko’s method of finding the global minimum of the ε-Lipschitz function and its applications ]”, Vestnik KGTU im. A. N. Tupoleva, 2:2 (2013), 154-157 (In Russ.).
- N. K. Arutyunova, A. M. Dulliev, V. I. Zabotin, “Models and methods for three external ballistics inverse problems”, Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming & Computer Software, 10:4 (2017), 78-91. DOI: https://doi.org/10.14529/mmp170408
- V. I. Zabotin, P. A. Chernyshevskij, “Extension of Strongin’s global optimization algorithm to a function continuous on a compact interval”, Computer Research and Modeling, 11:6 (2019), 1111-1119. DOI: https://doi.org/10.20537/2076-7633-2019-11-6-1111-1119
- N. K. Arutyunova, A. M. Dulliev, V. I. Zabotin, “Global optimization of multivariable functions satisfying the Vanderbei condition”, J. Appl. Math. Comput., 68:3 (2022), 1135-1161. DOI: https://doi.org/10.1007/s12190-021-01563-4
- V. I. Zabotin, P. A. Chernyshevskij, “[Algorithm for calculating the minimum estimate of the ε-Lipschitz constant of a continuous function]”, Vestnik KGTU im. A. N. Tupoleva, 2 (2018), 127-132 (In Russ.).
- Y. D. Sergeyev, “Efficient strategy for adaptive partition of N-dimensional intervals in the framework of diagonal algorithms.”, Journal of Optimization Theory and Applications, 107 (2000), 145-168. DOI: https://doi.org/10.1023/A:1004613001755
Supplementary files


