Continuous global optimization of multivariable functions based on Sergeev and Kvasov diagonal approach

Cover Page

Cite item

Full Text

Abstract

One of modern global optimization algorithms is method of Strongin and Piyavskii modified by Sergeev and Kvasov diagonal approach. In recent paper we propose an extension of this approach to continuous multivariable functions defined on the multidimensional parallelepiped. It is known that Sergeev and Kvasov method applies only to a Lipschitz continuous function though it effectively extends one-dimensional algorithm to multidimensional case. So authors modify We modify mentioned method to a continuous functions using introduced by Vanderbei ε-Lipschitz. Because multidimensional parallelepiped is a convex compact set, we demand objective function to be only continuous on a search domain. We describe extended Strongin’s and Piyavskii’s methods in the Sergeev and Kvasov modification and prove the sufficient conditions for the convergence. As an example of proposed method’s application, at the end of this article we show numerical optimization results of different continuous but not Lipschitz functions using three known partition strategies: “partition on 2”, “partition on 2N” and “effective”. For the first two of them we present formulas for computing a new iteration point and for recalculating the ε-Lipschitz constant estimate. We also show algorithm modification that allows to find a new search point on any algorithm’s step.

About the authors

Vladislav I. Zabotin

Tupolev Kazan National Research Technical University – KAI

Email: v.zabotin@rambler.ru
ORCID iD: 0000-0002-0732-5380

Doctor of Technical Science, Professor, Department of Applied Mathematics and Informatics

Russian Federation, 55 Bolshaya Krasnaya St., Kazan 420015, Russia

Pavel A. Chernyshevskij

Tupolev Kazan National Research Technical University – KAI

Author for correspondence.
Email: pavelcomm@mail.ru
ORCID iD: 0000-0001-5036-6375

Postgraduate Student, Department of Applied Mathematics and Informatics

Russian Federation, 55 Bolshaya Krasnaya St., Kazan 420015, Russia

References

  1. S. A. Piyavskii, “An algorithm for finding the absolute extremum of a function”, Teoriya optimalnykh resheniy, 2 (1967), 13–24 (In Russ.).
  2. S. A. Piyavskii, “An algorithm for finding the absolute extremum of a function”, USSR Computational Mathematics and Mathematical Physics, 12:4 (1972), 57–67885–896 (In Russ.). DOI: https://doi.org/10.1016/0041-5553(72)90115-2
  3. Yu. G. Evtushenko, “Numerical method for finding the global extremum of a function (iteration on an uneven grid)”, USSR Computational Mathematics and Mathematical Physics, 11:6 (1971), 38–54 (In Russ.). DOI: https://doi.org/10.1016/0041-5553(71)90065-6 1390–1703
  4. B. Shubert, “A sequential method seeking the global maximum of a function”, SIAM J. Numer. Anal., 9:3 (1972), 379-388.
  5. R. G. Strongin, [Numerical methods in multiextremal problems], Nauka Publ., Moscow, 1978 (In Russ.), 240 p.
  6. Ya. D. Sergeev, D. E. Kvasov, [Diagonal methods of global optimization], Fizmatlit Publ., Moscow, 2008 (In Russ.), 352 p.
  7. B. R. Gelbaum, J. M. H. Olmsted, Counterexamples in analysis, Holden-Day, Inc., San Francisco, 1967, 251 p.
  8. R. J. Vanderbei, “Extension of Piyavskii’s algorithm to continuous global optimization”, Journal of Global Optimization, 14 (1999), 205-216. DOI: https://doi.org/10.1023/A:1008395413111
  9. S. Romaguera, M. Sanchis, “Semi-Lipschitz functions and best approximation in quasi-metric space”, J. Approx. Theory, 103:32 (2000), 292–301. DOI: https://doi.org/10.1006/jath.1999.3439
  10. E. Jouini, “Generalized Lipschitz functions”, Nonlinear Anal., 41 (2000), 371-382.
  11. M. A. Sadygov, “[Extremum problems with constraints in metric space]”, Doklady akademii nauk, 52:5 (2013), 490–493 (In Russ.). DOI: https://doi.org/10.7868/S0869565213300075
  12. Y. D. Sergeyev, A. Candelieri, D. E. Kvasov, R. Perego et al., “Safe global optimization of expensive noisy black-box functions in the δ-Lipschitz framework”, Soft. Comput., 24 (2020), 17715-17735. DOI: https://doi.org/10.1007/s00500-020-05030-3
  13. V. I. Zabotin, P. A. Chernyshevskij, “Two modifications of extension of Piyavskii’s global optimization algorithm to a function continuous on a compact interval and its convergence”, Herald of Tver State University. Series: Applied Mathematics, 3 (2021), 70-85 (In Russ.). DOI: https://doi.org/10.26456/vtpmk624
  14. N. K. Arutyunova, “[Yevtushenko’s method of finding the global minimum of the ε-Lipschitz function and its applications ]”, Vestnik KGTU im. A. N. Tupoleva, 2:2 (2013), 154-157 (In Russ.).
  15. N. K. Arutyunova, A. M. Dulliev, V. I. Zabotin, “Models and methods for three external ballistics inverse problems”, Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming & Computer Software, 10:4 (2017), 78-91. DOI: https://doi.org/10.14529/mmp170408
  16. V. I. Zabotin, P. A. Chernyshevskij, “Extension of Strongin’s global optimization algorithm to a function continuous on a compact interval”, Computer Research and Modeling, 11:6 (2019), 1111-1119. DOI: https://doi.org/10.20537/2076-7633-2019-11-6-1111-1119
  17. N. K. Arutyunova, A. M. Dulliev, V. I. Zabotin, “Global optimization of multivariable functions satisfying the Vanderbei condition”, J. Appl. Math. Comput., 68:3 (2022), 1135-1161. DOI: https://doi.org/10.1007/s12190-021-01563-4
  18. V. I. Zabotin, P. A. Chernyshevskij, “[Algorithm for calculating the minimum estimate of the ε-Lipschitz constant of a continuous function]”, Vestnik KGTU im. A. N. Tupoleva, 2 (2018), 127-132 (In Russ.).
  19. Y. D. Sergeyev, “Efficient strategy for adaptive partition of N-dimensional intervals in the framework of diagonal algorithms.”, Journal of Optimization Theory and Applications, 107 (2000), 145-168. DOI: https://doi.org/10.1023/A:1004613001755

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Zabotin V.I., Chernyshevskij P.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).