Resonance in bounded nonlinear pendulum-type systems

Cover Page

Cite item

Full Text

Abstract

Solving nonlinear differential equations with external forces is important for understanding resonant phenomena in the physics of oscillations. The article analyzes this problem basing on example of an ordinary second-order differential equation of the pendulum type, where the nonlinearity is described by a sinusoidal term. The phase plane of such an oscillator is constructed and its periodic trajectories are studied. It is illustrated that bounded nonlinearity matters only at intermediate amplitudes. The excitation of a nonlinear oscillator is carried out using a limited two–component force; the first its component corresponds to an oscillation at the resonant frequency of a linear oscillator, and the second is a limited function with a variable frequency. It is shown that with the appropriate choice of an external force, it is possible to obtain unlimited amplification of oscillations in a pendulum-type oscillator with amplitude linearly proportional to time. Spectral composition of the external force is investigated using short-time Fourier transform. It is demonstrated that in order to maintain the resonant mode, the frequency of the external force must continuously increase. Energy estimates of the external force and oscillator fluctuations depending on time are performed. The considered example is important for understanding resonant conditions in nonlinear problems.

About the authors

Efim N. Pelinovsky

Higher School of Economics; Institute of Applied Physics of the Russian Academy of Sciences

Author for correspondence.
Email: pelinovsky@appl.sci-nnov.ru
ORCID iD: 0000-0002-5092-0302

Doctor of Physical and Mathematical Sciences,  Professor of the Department of Fundamental Mathematics, National Research University «Higher School of Economics»; Chief Researcher, Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences

Russian Federation, 603155, Россия, Нижний Новгород, ул. Б. Печерская, д. 25/12; 603950, Россия, Н. Новгород, ул. Ульянова, д. 46

Ioann E. Melnikov

Higher School of Economics, Institute of Applied Physics of the Russian Academy of Sciences

Email: melnicovioann@gmail.com
ORCID iD: 0000-0003-4560-9648

Student of the Faculty of Informatics, Mathematics and Computer Science

Russian Federation, 25/12 B. Pecherskaya St., Nizhny Novgorod 603150, Russia

References

  1. L. D. Landau, E. M. Lifshitz, Mechanics, Third Edition: Volume 1 (Course of Theoretical Physics), Butterworth-Heinemann, 1976, 200 p.
  2. B. S. Ratner, [Charged particle accelerators], Fizmatgiz Publ., Moscow, 1960 (In Russ.), 115 p.
  3. E. Kartashova, “Nonlinear resonances of water waves”, 2009. DOI: https://doi.org/10.48550/arXiv.0905.0050
  4. D. A. Kovriguine, G. A. Maugin, A. I. Potapov, “Multiwave nonlinear couplings in elastic structures”, Mathematical Problems in Engineering, 2006. DOI: https://doi.org/10.1155/MPE/2006/76041
  5. J. Fajans, L. Friedland, “Autoresonant (nonstationary) excitation of pendulums, Plutinos, plasmas, and other nonlinear oscillators”, American Journal of Physics, 69:10 (2001), 1096–1102. DOI: https://doi.org/10.1119/1.1389278
  6. A. A. Andronov, A. A. Witt, S. E. Khaykin, Theory of Oscillators, Cambridge University Press, 1966, 815 p.
  7. V. I. Wexler, “[A new method for accelerating]”, Uspekhi fizicheskikh nauk, 93:11 (1967), 521–523 (In Russ.).
  8. L. Friedland, “Autoresonance in nonlinear systems”, 2009. DOI: https://doi.org/10.4249/scholarpedia.5473
  9. D. I. Trubetskov, D. I. Rozhnev, [Linear oscillations and waves], Fizmatlit Publ., Moscow, 2001 (In Russ.), 416 p.
  10. M. N. Yudin, Yu. A. Farkov, D. M. Filatov, [Introduction to wavelet analysis], Moscow Geological Exploration Academy Publ., Moscow, 2001 (In Russ.), 72 p.
  11. Heinzel G., Rüdiger A., Schilling R., “Spectrum and spectral density estimation by the Discrete Fourier transform (DFT), including a comprehensive list of window functions and some new at-top windows”, 2002.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Pelinovsky E.N., Melnikov I.E.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).