Application of the Full Approximation Scheme Multigrid Method to solving one-dimensional nonlinear partial differential equations by the Discontinuous Galerkin Method

Cover Page

Cite item

Full Text

Abstract

This paper considers the Full Approximation Scheme (FAS) multigrid method for the Discontinuous Galerkin method with implicit time discretization. The objective of the research is to apply this method to efficient solution of problems governed by nonlinear partial differential equations. A computational algorithm has been developed that implements the Full Approximation Scheme multigrid method using Newton's method and an improved Newton-Krylov method to solve the arising nonlinear equations at each grid level of the multigrid method. This approach significantly improves the efficiency of the algorithm and reduces required computational resources. Numerical experiments were conducted applying both approaches for solving the Hopf equation. The influence of the regularization parameter and of the Courant number on the convergence rate of Newton's method outer iterations was investigated. It has been experimentally demonstrated that the use of the Newton-Krylov method significantly improves the overall performance of the computational process compared to the traditional Newton's method, although both approaches demonstrate a similar order of convergence, approaching second order when using quadratic basis functions.

About the authors

Ruslan V. Zhalnin

National Research Mordovia State University

Email: zhrv@mrsu.ru
ORCID iD: 0000-0002-1103-3321

Ph.D. (Phys. and Math.), Dean of the Faculty of Mathematics and IT

Russian Federation, 68/1 Bolshevistskaya St., Saransk, 430005, Russia

Mikhail S. Nefedov

National Research Mordovia State University

Email: snef7@yandex.ru
ORCID iD: 0009-0002-7347-2191

Postgraduate Student, Department of Applied Mathematics

Russian Federation, 68/1 Bolshevistskaya St., Saransk, 430005, Russia

Svetlana K. Zinina

National Research Mordovia State University

Author for correspondence.
Email: zininaskh@math.mrsu.ru
ORCID iD: 0000-0003-3002-281X

h.D. (Math.), Associate Professor, Department of Applied Mathematics

Russian Federation, 68/1 Bolshevistskaya St., Saransk, 430005, Russia

References

  1. B. Cockburn, ''An Introduction to the Discontinuous Galerkin Method for Convection Dominated Problems'', Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, 1697, Springer, Berlin, 1998, 151–268.
  2. J. S. Hesthaven, T. Warburton, ''Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications.'', 2008. doi: 10.1007/978-0-387-72067-8
  3. R. V. Zhalnin, M. E. Ladonkina, V. F. Masyagin, V. F. Tishkin, ''Discontinuous finite-element galerkin method for numerical solution of parabolic problems in anisotropic media on triangle grids'', Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming, Computer Software, 9:3 (2016), 144-151. DOI:
  4. 14529/mmp160313
  5. R. V. Zhalnin, M. E. Ladonkina, V. F. Masyagin, V. F. Tishkin, ''Solving the problem of non-stationary filtration of substance by the discontinuous Galerkin method on unstructured grids'', Computational Mathematics and Mathematical Physics, 56:6 (2016), 977-986. doi: 10.1134/S0965542516060245
  6. M. D. Bragin, Y. A. Kriksin, V. F. Tishkin, ''Entropy stable discontinuous Galerkin method for two-dimensional Euler equations'', Math. Models Comput. Simul., 13:5 (2021), 897–906. doi: 10.20948/mm-2021-02-09
  7. V. F. Masyagin, R. V. Zhalnin, V. F. Tishkin, ''Application of an implicit scheme of the discontinuous galerkin method to solving gas dynamics problems on NVIDIA graphic accelerators'', Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming, Computer Software, 15:2 (2022), 86–99. DOI:
  8. 14529/mmp220207
  9. P.-O. Persson, J. Peraire, ''Newton-GMRES Preconditioning for Discontinuous Galerkin Discretizations of the Navier-Stokes Equations.'', SIAM Journal on Scientific Computing, 30:6 (2008), 2709–2733.. doi: 10.1137/070692108
  10. M. Franciolini, L. Botti, A. Colombo, A. Crivellini, ''p-multigrid matrixfree discontinuous galerkin solution strategies for the under-resolved simulation of incompressible turbulent flows'', Computers Fluids, 2020. DOI:
  11. 48550/arXiv.1809.00866
  12. N. Lei, D. Zhang, W. Zheng, ''P-multigrid method for the discontinuous galerkin discretization of elliptic problems'', Journal of Scientific Computing, 105:76 (2025). doi: 10.1007/s10915-025-03105-7
  13. L. Botti, A. Colombo, F. Bassi, ''h-multigrid agglomeration based solution strategies for discontinuous galerkin discretizations of incompressible flow problems'', Journal of Computational Physics, 2017, 382–415. doi: 10.1016/j.jcp.2017.07.002
  14. A. V. Wolkov, ''Application of the multigrid approach for solving 3D NavierStokes equations on hexahedral grids using the discontinuous Galerkin method'', Computational Mathematics and Mathematical Physics, 50:3 (2010), 495–508. doi: 10.1134/S0965542510030103
  15. P. F. Antonietti, M. Sarti, M. Verani, ''Multigrid algorithms for hp-discontinuous galerkin discretizations of elliptic problems'', SIAM Journal on Numerical Analysis, 53:1 (2015), 598–618. doi: 10.1137/130947015
  16. G. Fu, W. Kuang, ''hp-Multigrid Preconditioner for a Divergence-Conforming HDG Scheme for the Incompressible Flow Problems'', J. Sci Comput., 100:16 (2024). doi: 10.1007/s10915-024-02568-4
  17. A. Brandt, Multi-level Adaptive Computations in Fluid Dynamics, Williamsburg, 1979 (Technical Report AIAA-79-1455).
  18. W. Feng, Z. Guo, J. S. Lowengrub, S. M. Wise, ''A mass-conservative adaptive FAS multigrid solver for cell-centered finite difference methods on block-structured, locally-cartesian grids'', Journal of Computational Physics, 352 (2018), 463–497. doi: 10.1016/j.jcp.2017.09.065
  19. A. V. Gorobets, ''An approach to the implementation of the multigrid method with full approximation for CFD problems'', Comput. Math. Math. Phys., 63:11 (2023), 2150–2161. doi: 10.1134/S0965542523110106
  20. A. V. Gorobets, S. A. Sukov, A. R. Magomedov, ''Heterogeneous Parallel Implementation of the Full Approximation Scheme Multigrid Method in the NOISETTE Software Package'', Math. Models Comput. Simul., 16:4 (2024), 609–619. doi: 10.1134/S2070048224700261
  21. T. F. Chan, K. R. Jackson, ''Nonlinearly preconditioned Krylov subspace methods for discrete Newton algorithms'', SIAM J. Sci. Stat. Comput., 5 (1984), 533–542.
  22. P. N. Brown, Y. Saad, ''Hybrid Krylov methods for nonlinear systems of equations'', SIAM J. Sci. Stat. Comput., 11 (1990), 450–481.
  23. D. A. Knoll, D. E. Keyes, ''Jacobian-free Newton-Krylov methods: a survey of approaches and applications'', Journal of Computational Physics, 193:2 (2004), 357–397. doi: 10.1016/j.jcp.2003.08.010
  24. A. H. Baker, E. R. Jessup, T. Manteuffel, ''A Technique for Accelerating the Convergence of Restarted GMRES'', SIAM J. Matrix Anal. Appl., 26:4 (2005), 962–984. doi: 10.1137/S0895479803422014

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Zhalnin R.V., Nefedov M.S., Zinina S.K.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).