On perturbations of algebraic periodic automorphisms of a two-dimensional torus

Cover Page

Cite item

Full Text

Abstract

 According to the results of V. Z. Grines and A. N. Bezdenezhnykh, for each gradient-like diffeomorphism of a closed orientable surface M² there exist a gradient-like flow and a periodic diffeomorphism of this surface such that the original diffeomorphism is a superposition of a diffeomorphism that is a shift per unit time of the flow and the periodic diffeomorphism. In the case when M² is a two-dimensional torus, there is a topological classification of periodic maps. Moreover, it is known that there is only a finite number of topological conjugacy classes of periodic diffeomorphisms that are not homotopic to identity one. Each such class contains a representative that is a periodic algebraic automorphism of a two-dimensional torus. Periodic automorphisms of a two-dimensional torus are not structurally stable maps, and, in general, it is impossible to predict the dynamics of their arbitrarily small perturbations. However, in the case when a periodic diffeomorphism is algebraic, we constructed a one-parameter family of maps consisting of the initial periodic algebraic automorphism at zero parameter value and gradient-like diffeomorphisms of a twodimensional torus for all non-zero parameter values. Each diffeomorphism of the constructed one-parameter families inherits, in a certain sense, the dynamics of a periodic algebraic automorphism being perturbed.

About the authors

Vyacheslav Z. Grines

Higher School of Economics

Email: vgrines@yandex.ru
ORCID iD: 0000-0003-4709-6858

Dr.Sci. (Phys.-Math.), Professor of the Department of Fundamental Mathematics

Russian Federation, 25/12 Bolshaya Pecherskaya St., Nizhny Novgorod 603150, Russia

Dmitrii I. Mints

Higher School of Economics

Email: dmitriimints@gmail.com
ORCID iD: 0000-0003-0329-6946

Research Assistant, International Laboratory of Dynamical Systems and Applications

Russian Federation, 25/12 Bolshaya Pecherskaya St., Nizhny Novgorod 603155, Russia

Ekaterina E. Chilina

Higher School of Economics

Author for correspondence.
Email: k.chilina@yandex.ru
ORCID iD: 0000-0002-1298-9237

Research Assistant, International Laboratory of Dynamical Systems and Applications

Russian Federation, 25/12 Bolshaya Pecherskaya St., Nizhny Novgorod 603155, Russia

References

  1. A. B. Katok, B. Hasselblat., [Introduction to the modern dynamical systems theory], Factorial Publ., Moscow, 1999 (In Russ.), 768 с.
  2. D. V. Anosov, “[Geodesic flows on closed Riemannian manifolds of negative curvature]”, Trudy Mat. Inst. Steklov., 90 (1967), 3–210 (In Russ.).
  3. S. Batterson, “The dynamics of Morse-Smale diffeomorphisms on the torus”, Transactions of the American Mathematical Society, 256 (1979), 395–403.
  4. S. V. Sidorov, E. E. Chilina, “On non-hyperbolic algebraic automorphisms of a two-dimensional torus”, Zhurnal SVMO, 23:3 (2021), 295–307 (In Russ.). DOI:https://doi.org/10.15507/2079-6900.23.202103.295-307
  5. A. N. Bezdenezhykh, V. Z. Grines, “Realization of gradient-like diffeomorphisms of two-dimensional manifolds”, Sel. Math. Sov., 11:1 (1992), 19–23.
  6. J. Nielsen, Die struktur periodischer transformationen von flachen, 15, Levin & Munksgaard, Kobenhavn, 1937, 78 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Grines V.Z., Mints D.I., Chilina E.E.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).