On linear spaces of bipartite graphs

Cover Page

Cite item

Full Text

Abstract

The article considers symmetric linear spaces of bipartite graphs (SLSBG), i.e. the set of bipartite graphs with fixed lobes closed with respect to the symmetric difference and permutations of vertices in each lobe. The operation of symmetric difference itself is introduced in this work. The paper provides a structural description of all SLSBG. Symmetric linear spaces of bipartite graphs are divided into trivial (four SLSBG) and nontrivial. Non-trivial ones, in turn, are divided into two families. The first is C-series consisting only of bicomplete graphs, i.e. graphs that are a disjunct union of two complete bipartite graphs graph wings). The second family is D-series that includes graphs in which the degrees of vertices in one lobe have the same parity, and in the other lobe these degrees may be arbitrary. It is proved that every SLSBG of the D-series coincides with one of nine sets defined by the parity of the vertices’ degrees. For the SLSBG of the C-series it is obtained that every two-sided SLSBG (i.e., containing graphs whose both wings have nonempty lobes) is the intersection of the set of all bicomplete graphs with the set of all graphs with an even number of edges or with any space of the D-series.

About the authors

Vladimir E. Alekseev

Author for correspondence.
Email: darya.zakharova@itmm.unn.ru
ORCID iD: 0000-0003-1533-0697

D.Sci. (Phys.-Math.)

Russian Federation

Darya V. Zakharova

National Research Lobachevsky State University of Nizhny Novgorod

Email: darya.zakharova@itmm.unn.ru
ORCID iD: 0009-0008-8040-7164

Senior Lecturer, Department of Algebra, Geometry and Discrete Mathematics

Russian Federation, 23 Gagarina Av., Nizhny Novgorod 603022, Russia

References

  1. V.A. Emelichev, O. I. Melnikov, V. I. Sarvanov, R. I. Tyshkevich, Lectures on graph theory, Nauka Publ., Moscow, 1990 (In Russ), 384 p.
  2. A.A. Zykov, Basics of graph theory, Nauka Publ., Moscow, 1987 (In Russ), 383 p.
  3. V.E. Alekseev, D.V. Zakharova, "Symmetric spaces of graphs", Discrete analysis and operations research, 14:1 (2007), 24-26 (In Russ).
  4. D.V. Zakharova, "Symmetric linear spaces of graphs", Discrete Mathematics and Applications, 23:2 (2011), 104–107 (In Russ). DOI: https://doi.org/10.1515/dma.2011.019
  5. V.T. Alekseev, V.A. Talanov, Graphs. Computing models. Algorithms, Nizhny Novgorod St. Univ. Publ., 2005 (In Russ).
  6. V.E. Alekseev, V.A. Talanov, Graphs and algorithms. Data structures. Computation models., M. INTUIT, 2006 (In Russ).
  7. V.E. Alekseev, D.V. Zakharova, Graph theory, Nizhny Novgorod St. Univ. Publ., 2018 (In Russ).
  8. V.E. Alekseev, Investigation of quantitative and complexity characteristics of hereditary graph classes, Doctoral dissertation (Phys.-Math), Nizhny Novgorod, 2002 (In Russ).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Alekseev V.E., Zakharova D.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).