Investigation of different influence functions in peridynamics

Cover Page

Cite item

Full Text

Abstract

Peridynamics is a non–local numerical method for solving fracture problems based on integral equations. It is assumed that particles in a continuum are endowed with volume and interact with each other at a finite distance, as in molecular dynamics. The influence function in peridynamic models is used to limit the force acting on a particle and to adjust the bond strength depending on the distance between the particles. It satisfies certain continuity conditions and describes the behavior of non-local interaction. The article investigates various types of influence function in peridynamic models on the example of three-dimensional problems of elasticity and fracture. In the course of the work done, the bond-based and state-based fracture models used in the Sandia Laboratory are described, 6 types of influence functions for the bond-based model and 2 types of functions for the state-based model are presented, and the corresponding formulas for calculating the stiffness of the bond are obtained. For testing, we used the problem of propagation of a spherically symmetric elastic wave, which has an analytical solution, and a qualitative problem of destruction of a brittle disk under the action of a spherical impactor. Graphs of radial displacement are given, raster images of simulation results are shown.

About the authors

Yuriy N. Deryugin

Russian Federal Nuclear Center
National Research Mordovia State University

Email: dyn1947@yandex.ru
ORCID iD: 0000-0002-3955-775X

Chief Researcher

professor, Department of Applied Mathematics, Differential Equations and Theoretical Mechanics

Russian Federation, 22 Yunosti St., Sarov 607182, Russia 68/1 Bolshevistskaya St., Saransk 430005, Russia

Maxim V. Vetchinnikov

Russian Federal Nuclear Center

Email: vetchinnikov_max@mail.ru
ORCID iD: 0000-0003-0321-1738

Head of research laboratory

Russian Federation, 22 Yunosti St., Sarov 607182, Russia

Dmitry A. Shishkanov

Russian Federal Nuclear Center
National Research Mordovia State University

Author for correspondence.
Email: dima.shishkanov.96@mail.ru
ORCID iD: 0000-0002-3063-4798

research laboratory mathematician, 

postgraduate, Department of Applied Mathematics, Differential Equations and Theoretical Mechanics

Russian Federation, 22 Yunosti St., Sarov 607182, Russia 68/1 Bolshevistskaya St., Saransk 430005, Russia

References

  1. F. Bobaru, P.H. Geubelle, J.T. Foster, S. A. Silling, Handbook of peridynamic modeling, Taylor & Francis, NY, 2016 DOI: https://doi.org/10.1201/9781315373331, 586 p.
  2. E. Madenci, E. Oterkus, Peridynamic theory and its applications, New York: Springer, 2014 DOI: https://doi.org/10.1007/978-1-4614-8465-3, 297 p.
  3. D. A. Shishkanov, M. V. Vetchinnikov, Yu. N. Deryugin, "Peridynamics method for problems solve of solids destruction", Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 24:4 (2022), 452–468 (In Russ.). DOI: https://doi.org/10.15507/2079-6900.24.202204.452-468
  4. V. N. Sofronov, M. V. Vetchinnikov, M. A. Dyemina, "Use of Hamiltonian dynamics methods in computational continuum mechanics", Zhurnal VANT, 2020, no. 4 (In Russ.), 17 p.
  5. M.L. Parks, P. Seleson, S. J. Plimpton, R.B. Lehoucq , S.A. Siling, "Peridynamics with LAMMPS: A User Guide v0.2 Beta", 2008, 28 p.
  6. A. N. Anisimov, S. A. Grushin, B. L. Voronin, S. V. Kopkin, A. M. Yerofeev, D. A. Demin, M. A. Demina, M. V. Zdorova, M. V. Vetchinnikov, N. S. Ericheva, N. O. Kovalenko, I. A. Kryuchkov, A. G. Kechin, V. A. Degtyarev, Certificate of state registration of the computer program No. 2010614974. A complex of molecular dynamic modeling programs (MoDyS), 2010 (In Russ.).
  7. M. L. Parks, Lehoucq, R. B., S. J. Plimpton, S. A. Silling, "Implementing peridynamics within a molecular dynamics code", Computer Physics Communications, 179 (2008), 777–783. DOI: https://doi.org/10.1016/j.cpc.2008.06.011
  8. S. A. Silling, "Reformulation of elasticity theory for discontinuities and long-range forces", Journal of Mechanics and Physics of Solids, 48:1 (2000), 175–209. DOI: https://doi.org/10.1016/S0022-5096(99)00029-0
  9. S. A. Silling, E. Askari, "A meshfree method based on the peridynamic model of solid mechanics", Computers & Structures, 93:17 (2005), 1526–1535. DOI: https://doi.org/10.1016/j.compstruc.2004.11.026
  10. S. A. Silling, M. Zimmermann, R. Abeyaratne, "Deformation of a peridynamic bar", Journal of Elasticity, 73 (2003), 173–190.
  11. Z. Chen, J. W. Ju, G. Su, X. Huang, S. Li., L. Zhai, "Influence of micromodulus functions on peridynamics simulation of crack propagation and branching in brittle materials", Engineering Fracture Mechanics, 216 (2019). DOI: https://doi.org/10.1016/j.engfracmech.2019.106498
  12. S. A. Silling, M. Epton, O. Weckner, J. Xu, E. Askari, "Peridynamic states and constitutive modeling", Journal of Elasticity, 88 (2007), 151–184. DOI: https://doi.org/10.1007/s10659-007-9125-1
  13. A. J. Mitchell, S. A. Silling, D. J. Littlewood, "A position-aware linear solid constitutive model for peridynamics", Journal of Mechanics of Materials and Structures, 20:5 (2015), 539–557. DOI: https://dx.doi.org/10.2140/jomms.2015.10.539
  14. J. A. Mitchell, "On the ‘DSF’ and the ‘dreaded surface effect’, studies of presentation at Workshop on Nonlocal Damage and Failure", Sandia National Laboratories, 2013.
  15. S. A. Silling, R. B. Lehoucq, "Convergence of Peridynamics to Classical Elasticity Theory", Journal of Elasticity, 93 (2008), 13–37.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Deryugin Y.N., Vetchinnikov M.V., Shishkanov D.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).