On Logarithmic Hölder Condition and Local Extrema of Power Takagi Functions

Cover Page

Cite item

Full Text

Abstract

This paper studies one class of real functions, which we call Takagi power functions. Such functions have one positive real parameter; they are continuous, but nowhere differentiable, and are given on a real line using functional series. These series are similar to the series defining the continuous, nowhere differentiable Takagi function described in 1903. For each parameter value, we derive a functional equation for functions related to Takagi power functions. Then, using this equation, we obtain an accurate two-sides estimate for the functions under study. Next, we prove that for parameter values not exceeding 1, Takagi power functions satisfy the Hölder logarithmic condition, and find the smallest value of the constant in this condition. As a result, we get the usual Hölder condition, which follows from the logarithmic Hölder condition. Moreover, for parameter values ranging from 0 to 1, we investigate the behavior of Takagi power functions in the neighborhood of their global maximum points. Then we show that the functions under study reach a strict local minimum on the real axis at binary-rational points, and only at them. Finally, we describe the set of points at which our functions reach a strict local maximum. The benefit of our research lies in the development of methods applicable to continuous functions that cannot be differentiated anywhere. This can significantly expand the set of functions being studied.

About the authors

Oleg Evgenjevich Galkin

National Research University "Higher School of Economics", Nizhny Novgorod Branch

Email: olegegalkin@ya.ru
ORCID iD: 0000-0003-2085-572X

Candidate of physico-mathematical sciences, Associate professor

25/12 B. Pecherskaya St., Nizhny Novgorod 603155, Russia

Svetlana Yu. Galkina

National Research University «Higher School of Economics»

Email: svetlana.u.galkina@mail.ru
ORCID iD: 0000-0002-2476-2275

Ph.D. (Phys.-Math.), Associate Professor, Department of Fundamental Mathematics

Russian Federation, 25/12 B. Pecherskaya St., Nizhny Novgorod 603155, Russia

Olga A. Mulyar

National Research Lobachevsky State University of Nizhny Novgorod

Author for correspondence.
Email: olga.mulyar@itmm.unn.ru
ORCID iD: 0009-0008-2263-4203

Ph.D. (Phys.-Math.), Lecturer, Department of Algebra, Geometry and Discrete Mathematics

Russian Federation, 23 Gagarin Av., Nizhny Novgorod 603022, Russia

References

  1. P. C. Allaart, K. Kawamura, "The Takagi function: a survey", Real Anal. Exchange., 37:1 (2011/12), 1–54. DOI: https://doi.org/10.14321/realanalexch.37.1.0001
  2. J. C. Lagarias, "The Takagi function and its properties", RIMS Kokyuroku bessatsu B34: Functions and number theory and their probabilistic aspects, 34 (2012), 153–189.
  3. O. E. Galkin, S. Yu. Galkina, A. A. Tronov, "On global extrema of power Takagi functions", Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva, 25:2 (2023), 22–36 (In Russ.). DOI: https://doi.org/10.15507/2079-6900.25.202302.22-36
  4. F. A. Medvedev, Essays on the history of the theory of functions of a real variable, M. Nauka, 1975 (In Russ.), 248 p.
  5. V.A. Okorokov, E.V. Sandrakova, Fractals in fundamental physics. Fractal properties of multiple particle formation and sampling topology, M. MEPhI, 2009 (In Russ.), 460 p.
  6. J. Thim, Continuous nowhere differentiable functions. Master’s thesis, Luleå, 2003, 98 p.
  7. Y. Heurteaux, "Weierstrass functions in Zygmund’s class", Proc. Amer. Math. Soc., 133 (2005), 2711–2720.
  8. Y. Fujita, N. Hamamuki, A. Siconolfi, N. Yamaguchi, "A class of nowhere differentiable functions satisfying some concavity-type estimate", Acta Mathematica Hungarica., 160 (2020), 343–359. DOI: https://doi.org/10.1007/s10474-019-01007-3
  9. E. E. Posey, J. E. Vaughan, "Extrema and nowhere differentiable functions", Rocky Mountain Journal of mathematics., 16 (1986), 661–668. DOI: https://doi.org/10.1216/RMJ-1986-16-4-661
  10. J.-P. Kahane, "Sur l’exemple, donné par M. de Rham, d’une fonction continue sans dérivée", Enseignement Math., 5 (1959), 53–57.
  11. S. Banach, "Uber die Baire’sche Kategorie gewisser Funktionenmengen", Studia Math., 3:3 (1931), 174–179. DOI: https://doi.org/10.4064/sm-3-1-174-179
  12. P. C. Allaart, K. Kawamura, "Extreme values of some continuous nowhere differentiable functions", Math. Proc. of the Cambridge Phil. Soc., 140:2 (2006), 269–295. DOI: https://doi.org/10.1017/S0305004105008984
  13. O. E. Galkin, S. Yu. Galkina, "Application of extreme sub- and epiarguments, convex and concave envelopes to search for global extrema", Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 29:4 (2019), 483–500 (In Russ.). DOI: https://doi.org/10.20537/vm190402
  14. O. E. Galkin, S. Yu. Galkina, "Global extrema of the Delange function, bounds for digital sums and concave functions", Sbornik: Mathematics, 211:3 (2020), 336–372. DOI: https://doi.org/10.1070/SM9143
  15. A. Denjoy, L. Felix, P. Montel, "Henri Lebesgue, le savant, le professeur, l’homme", Enseignement Math., 3 (1957), 1–18. DOI: https://www.eperiodica.ch/digbib/view?pid=ens-001%3A1957%3A3#102
  16. V. Makogin, Yu. Mishura, "Fractional integrals, derivatives and integral equations with weighted Takagi–Landsberg functions", Nonlinear Analysis: Modelling and Control, 25:6 (2020), 1079–1106. DOI: https://doi.org/10.15388/namc.2020.25.20566
  17. H. Yu, “Weak tangent and level sets of Takagi functions” , Monatshefte für Mathematik, 1192:6 (2020), 249–264. DOI: https://doi.org/10.1007/s00605-020-01377-9
  18. X. Han, A. Schied, Z. Zhang, "A limit theorem for Bernoulli convolutions and the Ф-variation of functions in the Takagi class", J. Theor. Probab., 35 (2022), 2853–2878. DOI: https://doi.org/10.1007/s10959-022-01157-1
  19. M. Krüppel, "Takagi’s continuous nowhere differentiable function and binary digital sums", Rostock. Math. Kolloq., 63 (2008), 37–54.
  20. A. Shidfar, K. Sabetfakhri, "On the continuity of van der Waerden’s function in the Hölder sense", Amer. Math. Monthly, 93:5 (1986), 375–376.
  21. M. Krüppel, "On the extrema and the improper derivatives of Takagi’s continuous nowhere differentiable function", Rostock. Math. Kolloq., 62 (2007), 41–59.
  22. A. Házy, Zs. Páles, "On approximately t-convex functions", Publ. Math. Debrecen., 66:3–4 (2005), 489–501.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Galkin O.E., Galkina S.Y., Mulyar O.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).