On periodic solutions of linear inhomogeneous differential equations with a small perturbation at the derivative

Cover Page

Cite item

Full Text

Abstract

In a Banach space, using branching theory methods, a periodic solution of a linear inhomogeneous differential equation with a small perturbation at the derivative (perturbed equation) is constructed. Under the condition of presence of a complete generalized Jordan set, the uniqueness of this periodic solution is proven. It is shown that when a small parameter is equal to zero and certain conditions are met, the periodic solution of the perturbed equation transforms into the family of periodic solutions of the unperturbed equation. The result is obtained by representing the perturbed equation as an operator equation in Banach space and applying the theory of generalized Jordan sets and modified Lyapunov-Schmidt method. As is known, the latter method reduces the original problem to study of the Lyapunov-Schmidt resolving system in the root subspace. In this case, the resolving system splits into two inhomogeneous systems of linear algebraic equations, that have unique solutions at ε ≠ 0, and 2n parameter families of real solutions at ε = 0 respectively.

About the authors

Evgeniy V. Desyaev

National Research Mordovia State University

Email: desyaev@rambler.ru
ORCID iD: 0000-0003-2583-6966

Ph.D. (Physics and Mathematics), Associate Professor, Department of Applied Mathematics, Differential Equations and Theoretical Mechanics

Russian Federation, 68 Bolshevistskaya Str., Saransk 430005, Republic of Mordovia, Russia

Pavel A. Shamanaev

National Research Mordovia State University

Author for correspondence.
Email: korspa@yandex.ru
ORCID iD: 0000-0002-0135-317X

Ph.D. (Physics and Mathematics), Associate Professor, Department of Applied Mathematics, Differential Equations and Theoretical Mechanics

Russian Federation, 68 Bolshevistskaya Str., Saransk 430005, Republic of Mordovia, Russia

References

  1. A.M. Lyapunov, "Sur les figures d’equilibre peu differentes des ellipsoides d’une masse liquide homogene donee d’un mouvement de rotation", Academician Sciences, St. Petersburg, 1906.
  2. E. Schmidt, "Zur Theorie linearen und nichtlinearen Integral gleichungen", Math. Ann., 65 (1908), 370-399.
  3. M.M. Vaynberg, V.A. Trenogin, Teoriya vetvleniya resheniy nelineynykh uravneniy [Branching theory for solutions to nonlinear equations], Nauka Publ., Moscow, 1968 (In Russ.), 528 p.
  4. B.V. Loginov, "Determination of the branching equation by its group symmetry - Andronov-Hopf bifurcation", Nonlinear Analysis: TMA, 28:12 (1997), 2035-2047.
  5. B.V. Loginov, L.R. Kim-Tyan, Yu.B. Rousak, "On the stability of periodic solutions for differential equations with a Fredholm operator at the highest derivative", Nonlinear analysis, 67:5 (2007), 1570-1585.
  6. I.V. Konopleva, B.V. Loginov, Yu.B. Rusak, "Simmetriya i potentsial’nost’ uravneniy razvetvleniya v kornevykh podprostranstvakh v neyavno zadannykh statsionarnykh i dinamicheskikh bifurkatsionnykh zadachakh [Symmetry and potentiality of branching equations in root subspaces in implicitly given stationary and dynamic bifurcation
  7. problems]", Izvestiya vysshikh uchebnykh zavedeniy. Severo-Kavkazskiy region. Seriya: Estestvennye nauki [News of higher educational institutions. North Caucasus region. Series: Natural Sciences], 2009, 115-124 (In Russ.).
  8. A.A. Kyashkin, B.V. Loginov, P. A. Shamanaev, "The branching of periodic solutions of inhomogeneous linear differential equations with degenerate or identity operator in the derivative and the disturbance in the form of small linear term", Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 18:1 (2016), 45–53 (In Russ.).
  9. P.A. Shamanaev B.V. Loginov, "The branching of periodic solutions of inhomogeneous linear differential equations with a the perturbation in the form of small linear term with delay", Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 18:3 (2016), 61–69 (In Russ.).
  10. N. Sidorov, B. Loginov, M. Falaleev, Lyapunov-Schmidt methods in nonlinear analysis and applications, Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 2002, 550 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Desyaev E.V., Shamanaev P.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).