On global extrema of power Takagi functions

Cover Page

Cite item

Full Text

Abstract

By construction, power Takagi functions Sp are similar to Takagi's continuous nowhere differentiable function described in 1903. These real-valued functions Sp have one real parameter p>0. They are defined on the real axis RR"> by the series Sp(x)=∑n=0 (S0(2nx)/2n)p, where S0(x) is the distance from real number x to the nearest integer number. We show that for every p>0, the functions Sp are everywhere continuous, but nowhere differentiable on R. Next, we derive functional equations for Takagi power functions. With these, it is possible, in particular, to calculate the values Sp(x) at rational points x. In addition, for all values of the parameter p from the interval (0; 1), we find the global extrema of the functions Sp, as well as the points where they are reached. It turns out that the global maximum of Sp equals to 2p/(3p(2p-1)) and is reached only at points q+1/3 and q+2/3, where q is an arbitrary integer. The global minimum of the functions Sp equals to 0 and is reached only at integer points. Using the results on global extremes, we obtain two-sided estimates for the functions Sp and find the points at which these estimates are reached.

About the authors

Oleg E. Galkin

National Research University «Higher School of Economics»

Email: olegegalkin@ya.ru
ORCID iD: 0000-0003-2085-572X

Ph.D. (Phys.-Math.), Associate Professor, Department of Fundamental Mathematics

Russian Federation, 25/12 B. Pecherskaya St., Nizhny Novgorod 603155, Russia

Svetlana Yu. Galkina

National Research University «Higher School of Economics»

Email: svetlana.u.galkina@mail.ru
ORCID iD: 0000-0002-2476-2275

Ph.D. (Phys.-Math.), Associate Professor, Department of Fundamental Mathematics

Russian Federation, 25/12 B. Pecherskaya St., Nizhny Novgorod 603155, Russia

Anton A. Tronov

National Research University «Higher School of Economics»

Author for correspondence.
Email: tronovaa@yandex.ru
ORCID iD: 0009-0000-6454-1226

master’s student of the Faculty of Informatics, Mathematics and Computer Science

Russian Federation, 25/12 B. Pecherskaya St., Nizhny Novgorod 603155, Russia

References

  1. T. Takagi, "A simple example of a continuous function without derivative", Tokyo Sugaku-Butsurigakkwai Hokoku, 1 (1901), 176–177. DOI: https://doi.org/10.11429/subutsuhokoku1901.1.F176
  2. F. A. Medvedev, Essays on the history of the theory of functions of a real variable, Nauka Publ., Moscow, 1975 (In Russ.), 248 p.
  3. J. Thim, "Continuous nowhere differentiable functions: Master thesis", 2003, 98 p.
  4. F. S. Cater, "Constructing nowhere differentiable functions from convex functions", Real Anal. Exchange., 28:2 (2002/2003), 617–623.
  5. Y. Fujita, N. Hamamuki, A. Siconolfi, N. Yamaguchi, "A class of nowhere differentiable functions satisfying some concavity-type estimate", Acta Mathematica Hungarica, 160 (2020), 343–359. DOI: https://doi.org/10.1007/s10474-019-01007-3
  6. P. C. Allaart, K. Kawamura, "The Takagi function: a survey", Real Anal. Exchange., 37:1 (2011/12), 1–54. DOI: https://doi.org/10.14321/realanalexch.37.1.0001
  7. J.-P. Kahane, "Sur l’exemple, donné par M. de Rham, d’une fonction continue sans dérivée", Enseignement Math., 5 (1959), 53–57. DOI: https://doi.org/10.5169/seals-35474
  8. M. Hata, M. Yamaguti, "Takagi function and its generalization", Japan J. Appl. Math., 1 (1984), 183–199. DOI: https://doi.org/10.1007/BF03167867
  9. X. Han, A. Schied, "Step roots of Littlewood polynomials and the extrema of functions in the Takagi class", Math. Proc. of the Cambridge Phil. Soc., 173 (2022), 591–618. DOI: https://doi.org/10.1017/S0305004122000020
  10. O. E. Galkin, S. Yu. Galkina, "Functions consistent with real numbers, and global extrema of functions in exponential Takagi class", 2020, 60 p. DOI: https://doi.org/10.48550/arXiv.2003.08540
  11. S. Yu. Galkina, "On the Fourier-Haar coefficients of functions of bounded variation", Math. Notes, 51:1 (1992), 27–36. DOI: https://doi.org/10.1007/BF01229431
  12. J. Tabor, J. Tabor, "Takagi functions and approximate midconvexity", J. Math. Anal. Appl., 356:2 (2009), 729–737. DOI: https://doi.org/10.1016/j.jmaa.2009.03.053
  13. O. E. Galkin, S. Yu. Galkina, "On properties of functions in exponential Takagi class", Ufa Mathematical Journal, 7:3 (2015), 28–37. DOI: https://doi.org/10.13108/2015-7-3-28
  14. S. Tasaki, I. Antoniou, Z. Suchanecki, "Deterministic diffusion, de Rham equation and fractal eigenvectors", Physics Letter A., 179:2 (1993), 97–102. DOI: https://doi.org/10.1016/0375-9601(93)90656-K
  15. A. Házy, Zs. Páles, "On approximately t-convex functions", Publ. Math. Debrecen., 66:3 (2005), 489–501. DOI: https://doi.org/10.1017/S0305004122000020
  16. O. E. Galkin, S. Yu. Galkina, "Global extrema of the Gray Takagi function of Kobayashi and binary digital sums", Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:1 (2017), 17–25 (In Russ.). DOI: https://doi.org/10.20537/vm170102
  17. O. E. Galkin, S. Yu. Galkina, "Global extrema of the Delange function, bounds for digital sums and concave functions", Sbornik: Mathematics, 211:3 (2020), 336–372. DOI: https://doi.org/10.4213/sm9143
  18. O. E. Galkin, S. Yu. Galkina, "Application of extreme sub- and epiarguments, convex and concave envelopes to search for global extrema", Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 29:4 (2019), 483–500 (In Russ.). DOI: https://doi.org/10.20537/vm190402
  19. J. Rodríguez-Cuadrado, J. San Martín, "Sierpinski-Takagi combination for a uniform and optimal point-surface load transmission", Appl. Math. Modelling., 105 (2022), 307–320. DOI: https://doi.org/10.1016/j.apm.2021.12.040
  20. Y. Fujita, A. Siconolfi, N. Yamaguchi, "Hamilton–Jacobi flows with nowhere differentiable initial data", Mathematische Annalen., 385 (2023), 1061–1084. DOI: https://doi.org/10.1007/s00208-021-02353-w

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Galkin O.E., Galkina S.Y., Tronov A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).