Energy Function for Direct Products of Discrete Dynamical Systems

Cover Page

Cite item

Full Text

Abstract

This paper is devoted to the construction of an energy function, i.e. a smooth Lyapunov function, whose set of critical points coincides with the chain-recurrent set of a dynamical system — for a cascade that is a direct product of two systems. One of the multipliers is a structurally stable diffeomorphism given on a two-dimensional torus, whose non-wandering set consists of a zero-dimensional non-trivial basic set without pairs of conjugated points and without fixed source and sink, and the second one is an identical mapping on a real axis. It was previously proved that if a non-wandering set of a dynamical system contains a zero-dimensional basic set, as the diffeomorphism under consideration has, then such a system does not have an energy function, namely, any Lyapunov function will have critical points outside the chain-recurrent set. For an identical mapping, the energy function is a constant on the entire real line. In this paper, it is shown that the absence of an energy function for one of the multipliers is not a sufficient condition for the absence of such a function for the direct product of dynamical systems, that is, in some cases it is possible to select the second cascade in such a way that the direct product will have an energy function.

About the authors

Marina K. Barinova

National Research University «High School of Economics»

Email: mkbarinova@yandex.ru
ORCID iD: 0000-0002-4406-583X

Senior Research Fellow

Russian Federation, 25/12 B. Pecherskaya St., Nizhny Novgorod 603150, Russia

Evgenia K. Shustova

National Research University «High School of Economics»

Author for correspondence.
Email: ekshustova@gmail.com
ORCID iD: 0000-0002-4998-2186

student

25/12 B. Pecherskaya St., Nizhny Novgorod 603150, Russia

References

  1. C. Conley, "Isolated invariant sets and Morse index", 1978, 89 p.
  2. K. Meyer, "Energy functions for Morse–Smale systems", Amer. J. Math, 90:4 (1968), 1031—1040. DOI: https://doi.org/10.2307/2373287
  3. S. Smale, "On gradient dynamical systems", Annals Math, 74:1 (1961), 199—206. DOI: https://doi.org/10.2307/1970311
  4. J. Franks, "Nonsingular Smale flow on S3", Topology, 24:3 (1985), 265-282. DOI: https://doi.org/10.1016/0040-9383(85)90002-3
  5. M. Shub, "Morse-Smale diffeomorphism are unipotent on homology", Dynamical Systems, 1973, 489-491. DOI: https://doi.org/10.1016/B978-0-12-550350-1.50040-0
  6. F. Takens, "Tolerance stability, Dynamical systems -Warwick 1974 (Proc. Sympos. Appl. Topology and Dynamical Systems, Univ. Warwick, Coventry, 1973/1974; presented to E.C. Zeeman on his fiftieth birthday, Lecture Notes in Math., vol. 468, Springer, 1975), 1974, 293-304.
  7. V. Z. Grines, F. Laudenbach, O.V. Pochinka, "Dynamically ordered energy function for Morse-Smale diffeomorphisms on 3-manifolds", Proceedings of the Steklov Institute of Mathematics, 278 (2012), 27–40. DOI: https://doi.org/10.1134/S0081543812060041
  8. M. Barinova, V. Grines, O. Pochinka, B. Yu, "Existence of an energy function
  9. for three-dimensional chaotic "sink-source" cascades jour Chaos", 31:6 (2021). DOI:
  10. https://doi.org/10.1063/5.0026293
  11. V. Z. Grines, M.K. Noskova, O. V. Pochinka, "Construction of an energy function for A-diffeomorphisms of two-dimensional non-wandering sets on 3-manifolds", Zhurnal SVMO, 17:3 (2015), 12–17.
  12. D. Pixton, "Wild unstable manifolds", Topology, 16:2 (1977), 167—172. DOI: https://doi.org/10.1016/0040-9383(77)90014-3
  13. M. Barinova, "On existence of an energy function for ω-stable surface Diffeomorphisms, Lobachevskii Journal of Mathematics, 42:14 (2021), 3317–3323. DOI: https://doi.org/10.1134/S1995080222020020
  14. V. Grines, O. Pochinka, "Constructing energy function for certain classes of omegastable and diffeomorphisms on manifolds od dimention 2 and 3", Journal of Mathematical Sciences, 63:2 (2017), 191–222 (In Russ.). DOI: https://doi.org/10.22363/2413-3639-2017-63-2-191-222
  15. M.K. Barinova, E.K. Shustova, "Dynamical properties of direct products of discrete dynamical systems", Zhurnal SVMO, 24:1 (2022), 21-30 (In Russ.). DOI: https://doi.org/10.15507/2079-6900.24.202201.21-30
  16. S. Smale, "Differentiable dynamical systems", Russian Mathematical Surveys, 25:1 (1970), 113–185 (In Russ.).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Barinova M.K., Shustova E.K.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).