A square-root method for identifying the parameters of discrete-time linear stochastic systems with unknown input signals

Cover Page

Cite item

Full Text

Abstract

The paper proposes a new square-root gradient-based parameter identification method for discrete-time linear stochastic state-space systems with unknown input signals. A new algorithm is developed for calculating the values of the identification criterion and its gradient. The approach is based on a square-root modification of the Gillijns – De Moor method and uses numerically stable matrix orthogonal transformations. Unlike the existing solutions, this paper uses original methods for differentiating matrix orthogonal transformations. A new sensitivity model is constructed and theoretically justified, that allows calculating the values of the identification criterion gradient by using partial derivatives of state vector estimates based on identified parameters. The main results include new equations for the square-root sensitivity model and a square-root algorithm for calculating the values of the identification criterion and its gradient. Numerical experiments were performed in MATLAB for example of solving the numerical identification problem of a stochastic diffusion model with unknown boundary conditions. The effectiveness of the proposed algorithm is confirmed by comparison of gradient-based and gradient-free methods. The results of numerical experiments demonstrate efficiency of approach proposed which can be used to solve practical problems of identifying the parameters of mathematical models represented by discrete-time state-space linear stochastic systems, in the absence of any prior information about the input signals.

About the authors

Julia V. Tsyganova

Innopolis University

Email: tsyganovajv@gmail.com
ORCID iD: 0000-0001-8812-6035

D. Sc. (Phys. and Math.), Professor, Institute of Data Science and Artificial intelligence

Russian Federation, 1, Universitetskaya Str., Innopolis, 420500, Russia

Darya V. Galushkina

Ulyanovsk State University

Email: dgalushkina73@gmail.com
ORCID iD: 0000-0003-4041-0533

Assistant Professor, Department of Information Technologies

Russian Federation, 42 Leo Tolstoy str., Ulyanovsk, 432017, Russia

Anastasia N. Kuvshinova

Ulyanovsk State University of Education

Author for correspondence.
Email: kuvanulspu@yandex.ru
ORCID iD: 0000-0002-3496-5981

Ph.D. (Phys. and Math.) Department of Higher Mathematics

Russian Federation, 4/5 Lenin Square, Ulyanovsk, 432071, Russia

References

  1. M. S. Grewal, A. P. Andrews, Kalman filtering: Theory and practice using MATLAB, Prentice Hall, New Jersey, 2001, 401 p.
  2. B. Friedland, "Treatment of bias in recursive filtering", IEEE Transactions on Automatic Control, 14:4 (1969), 359–367. doi: 10.1109/TAC.1969.1099223
  3. P. K. Kitanidis, "Unbiased minimum-variance linear state estimation", Automatica, 23:6 (1987), 775–778. doi: 10.1016/0005-1098(87)90037-9
  4. M. Darouach, M. Zasadzinski, "Unbiased minimum variance estimation for systems with unknown exogenous inputs", Automatica, 33:4 (1997), 717–719. doi: 10.1016/S0005-1098(96)00217-8
  5. C.-S. Hsieh, "Robust two-stage Kalman filters for systems with unknown inputs", IEEE Transactions on Automatic Control, 45:12 (2000), 2374–2378. doi: 10.1109/9.895577
  6. S. Gillijns, B. De Moor, "Unbiased minimum-variance input and state estimation for linear discrete-time systems", Automatica, 43:1 (2007), 111–116. doi: 10.1016/j.automatica.2006.08.002
  7. S. Gillijns, N. Haverbeke, B. De Moor, "Information, covariance and square-root filtering in the presence of unknown inputs", The 2007 European Control Conference (ECC): Proceedings (Kos, Greece, 2–5 July, 2007), IEEE, 2007, 2213–2217 doi: 10.23919/ECC.2007.7068514.
  8. Y. Hua, N. Wang, K. Zhao, "Simultaneous unknown input and state estimation for the linear system with a rank-deficient distribution matrix", Mathematical Problems in Engineering, 2021, ID 6693690. doi: 10.1155/2021/6693690
  9. Yu. Tsyganova, A. Tsyganov, "Parameter identification of the linear discrete-time stochastic systems with uknown exogenous inputs", Cybernetics and Physics, 12:3 (2023), 219–229. doi: 10.35470/2226-4116-2023-12-3-219-229
  10. J. V. Tsyganova, A. V. Tsyganov, "Identification of parameters in a discrete linear stochastic system with unknown input signals'', XIV All-Russian Meeting on Control Problems : Collection of scientific papers (Moscow, June 17–20, 2024), V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow, 2024, 991–995 (In Russ.), https://www.elibrary.ru/item.asp?id=79486619.
  11. D. Galushkina, A. Kuvshinova, Yu. Tsyganova, "Numerical identification of reaction-diffusion model parameters under unknown boundary conditions", 2024 X International Conference on Information Technology and Nanotechnology (ITNT) : Proceedings (Samara, Russian Federation, 20–24 May, 2024), IEEE, 2024, 1–4 DOI:
  12. 1109/ITNT60778.2024.10582357.
  13. T. Kailath, A. H. Sayed, B. Hassibi, Linear estimation, Prentice Hall, New Jersey, 2000, 856 p.
  14. Yu. V. Tsyganova, M. V. Kulikova, "[On Modern Array Algorithms for Optimal Discrete Filtering]", Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:4 (2018), 5–30 (In Russ.). doi: 10.14529/mmp180401
  15. A. N. Kuvshinova, D. V. Galushkina, "[On the square-root modification of the Gillijns – De-More algorithm]'', Scientific Notes of UlSU. Series "Mathematics and Information Technologies", 2022, no. 1, 17–22 (In Russ.), http://mi.mathnet.ru/ulsu135.
  16. A. Tsyganov, Yu. Tsyganova, "SVD-based parameter identification of discrete-time stochastic systems with unknown exogenous inputs", Mathematics, 12:7 (2024), 1006. doi: 10.3390/math12071006
  17. Ya. Z. Tsypkin, Informacionnaya teoriya identifikacii [Information theory of identification], Fizmatlit, Moscow, 1995 (In Russ.), 336 p.
  18. N. K. Gupta, R. K. Mehra, "Computational aspects of maximum likelihood estimation and reduction in sensitivity function calculations", IEEE Trans. on Automatic Control, AC-19 (1974), 774–783. doi: 10.1109/TAC.1974.1100714
  19. B. P. Gibbs, Advanced Kalman filtering, least-squares and modeling : a practical handbook, John Wiley & Sons, Inc., Hoboken, New Jersey, 2011, 632 p.
  20. A. V. Golubkov, Yu. V. Tsyganova, A. V. Tsyganov, "Constructing a sensitivity model based on an algorithm for simultaneous estimation of input and state for linear discrete-time stochastic systems with unknown inputs", Control Systems, Complex Systems : Modeling, Stability, Stabilization, Intelligent Technologies (CSMSSIT-2025): Proceedings of the X International Scientific and Practical Conference (Yelets, April 24–25, 2023), Yelets State University named after I. A. Bunin, Yelets, 2023, 41–45 (In Russ.), https://elibrary.ru/item.asp?id=54172715.
  21. G. J. Bierman, M. R. Belzer, J. S. Vandergraft, D.W. Porter, "Maximum likelihood estimation using square root information filters", IEEE Trans. Automat. Contr., 35:12 (1990), 1293–1299. doi: 10.23919/ACC.1989.4790637
  22. M. V. Kulikova, Yu. V. Tsyganova, "[On differentiation of matrix orthogonal transformations]", Journal of Computational Mathematics and Mathematical Physics, 55:9 (2015), 1460–1473 (In Russ.). doi: 10.1134/S0965542515090109
  23. J. Nocedal, S. J. Wright, Numerical optimization. In Springer Series in Operations Research and Financial Engineering, Springer Nature, 2006, 664 p.
  24. A. N. Kuvshinova, "[Dynamic identification of boundary conditions for convectiondiffusion transport model in the case of noisy measurements]", Zhurnal SVMO, 21:4 (2019), 469–479 (In Russ.). doi: 10.15507/2079-6900.21.201904.469-479
  25. A. B. Mazo, Vychislitel'naya gidrodinamika. CHast' 1. Matematicheskie modeli, setki i setochnye skhemy : ucheb. posobie [Computational fluid dynamics. Part 1. Mathematical models, grids and grid schemes : textbook], Kazan. Univ., Kazan, 2018 (In Russ.), 165 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Tsyganova J.V., Galushkina D.V., Kuvshinova A.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).