Asymptotic and numerical study to the damped Schamel equation
- Authors: Marcelo V. Flamarion, Efim N. Pelinovsky, Tatiana G. Talipova M.1, Pelinovsky E.N.2, Talipova T.G.3
-
Affiliations:
- Pontificia Universidad Cat´olica del Peru
- Gaponov-Grekhov Institute of Applied Physics, Higher School of Economics
- Gaponov-Grekhov Institute of Applied Physics
- Issue: Vol 27, No 2 (2025)
- Pages: 229-242
- Section: Mathematics
- Submitted: 10.10.2025
- Accepted: 10.10.2025
- Published: 27.10.2025
- URL: https://journals.rcsi.science/2079-6900/article/view/324415
- ID: 324415
Cite item
Full Text
Abstract
About the authors
Marcelo Marcelo V. Flamarion, Efim N. Pelinovsky, Tatiana G. Talipova
Pontificia Universidad Cat´olica del Peru
Email: mvellosoflamarionvasconcellos@pucp.edu.pe
ORCID iD: 0000-0001-5637-7454
Ph.D. (Mathematics), Professor, Departamento Ciencias– Seccio´n Matema´ticas
Peru, Av. Universitaria 1801, San Miguel 15088, Lima, PeruEfim N. Pelinovsky
Gaponov-Grekhov Institute of Applied Physics, Higher School of Economics
Email: pelinovsky@ipfran.ru
ORCID iD: 0000-0002-5092-0302
D. Sc. (Phys. and Math.), Chief Researcher, Gaponov-Grekhov Institute of Applied Physics
Professor, High School of Economics University
Russian Federation, 46 Uljanov Street, Nizhny Novgorod, 603120 Russian Federation 25 Bolshaya Pechorskaya Str., Nizhny Novgorod, 603120 Russian FederationTatiana G. Talipova
Gaponov-Grekhov Institute of Applied Physics
Author for correspondence.
Email: tgtalipova@mail.ru
ORCID iD: 0000-0002-1967-4174
D. Sc. (Phys. and Math.), Leading Researcher, Gaponov-Grekhov Institute of Applied Physics
Russian Federation, 46 Uljanov Street, Nizhny Novgorod, 603120 Russian FederationReferences
- Schamel H. Stationary solitary, snoidal, and sinusoidal ion acoustic waves. Physics of Plasmas. 1972. Vol. 14. P. 905–924.
- Schamel H. A modified Korteweg-de Vries equation for ion acoustic waves due to resonant electrons. Journal of Plasma Physics. 1973. Vol. 9. P. 377–387. doi: 10.1017/S002237780000756X
- Ali R., Saha A., Chatterjee P. Analytical electron acoustic solitary wave solution for the forced KdV equation in superthermal plasmas. Physics of Plasma. 2017. Vol. 9. doi: 10.1063/1.4994562
- Chowdhury S., Mandi L., Chatterjee P. Effect of externally applied periodic force on ion acoustic waves in superthermal plasmas. Physics of Plasmas. 2018. Vol. 25. doi: 10.1063/1.5017559
- Mushtaq A., Shah H. A. Study of non-Maxwellian trapped electrons by using generalized (r,q) distribution function and their effects on the dynamics of ion acoustic solitary waves Physics of Plasmas. 2006. Vol. 13. doi: 10.1063/1.2154639
- Williams G., Verheest F., Hellberg M. A., Anowar M. G. M., Kourakis I. A. Schamel equation for ion acoustic waves in superthermal plasmas. Physics of Plasmas. 2014. Vol. 21. doi: 10.1063/1.4894115
- Saha A., Chatterjee P. Qualitative structures of electron-acoustic waves in an unmagnetized plasma with q-nonextensive hot electrons. The European Physical Journal Plus. 2015. Vol. 130. doi: 10.1140/epjp/i2015-15222-2
- Saha A., Chatterjee P. Solitonic, periodic, quasiperiodic, and chaotic structures of dust ion acoustic waves in nonextensive dusty plasmas. The European Physical Journal D. 2015. Vol. 69. doi: 10.1140/epjd/e2015-60115-7
- Zemlyanukhin A. I., Andrianov I. V., Bochkarev A. V., Mogilevich L. I. The generalized Schamel equation in nonlinear wave dynamics of cylindrical shells. Nonlinear Dynamics. 2019. Vol. 98. P. 185–194. doi: 10.1007/s11071-019-05181-5
- Ruderman M., Pelinovsky E., Talipova T. Dynamics of modulationally unstable ionacoustic wavepackets in plasmas with negative ions. Journal of Plasma Physics. 2008. Vol. 74. P. 639–656. doi: 10.1017/S0022377808007150
- Ruderman M. S., Petrukhin N. S., Pelinovsky E., Kataeva L. Y. Quasi-parallel propagating solitons in magnetised relativistic electron-positron plasmas. Journal of Plasma Physics. 2023. Vol. 89. doi: 10.1017/S0022377823000156
- Flamarion M. V., Pelinovsky E., Didenkulova E. Investigating overtaking collisions of solitary waves in the Schamel equation Chaos, Solitons and Fractals. 2023. Vol. 174. doi: 10.13140/RG.2.2.27768.62729
- Didenkulova E., Pelinovsky E., Flamarion M. V. Bipolar solitary wave interactions within the Schamel Equation. Mathematics. 2023. Vol. 11. doi: 10.13140/RG.2.2.28055.55204
- Flamarion M. V., Pelinovsky E., Didenkulova E. Non-integrable soliton gas: The Schamel equation framework. Chaos, Solitons and Fractals. 2024. Vol. 180. doi: 10.13140/RG.2.2.35906.15043
- Flamarion M. V., Pelinovsky E. Interactions of solitons with an external force field: Exploring the Schamel equation framework. Chaos, Solitons and Fractals. 2023. Vol. 174. doi: 10.13140/RG.2.2.20039.98726
- Shan A. S. Dissipative electron-acoustic solitons in a cold electron beam plasma with superthermal trapped electrons. Astrophysics and Space Science. 2019. Vol. 364. doi: 10.1007/s10509-019-3524-1
- Sultana S., Kourakis I. Dissipative ion-acoustic solitary waves in magnetised kappa -
- distributed non-Maxwellian plasmas. Physics. 2022. Vol. 4. P. 68–79. doi: 10.3390/physics4010007
- Grimshaw R. Internal solitary waves. Environmental Stratified Flows. 2001. P. 1–27.
- Grimshaw R., Pelinovsky E., Talipova T. Damping of large-amplitude solitary waves. Wave Motion. 2003. Vol. 37. P. 351–364. doi: 10.1016/S0165-2125(02)00093-8
- Grimshaw R. H., Smyth N. F., Stepanyants Y. A. Decay of Benjamin-Ono solitons under the influence of dissipation. Wave Motion. 2018. Vol. 78. P. 98–115. doi: 10.1016/J.WAVEMOTI.2018.01.005
- Maslov V. P., Omelyanov G. A. Asymptotic soliton-form solutions of equations with small dispersion. Russian Mathematical Surveys. 1981. Vol. 36. P. 73–149. doi: 10.1070/RM1981v036n03ABEH004248
- Ostrovsky L. Asymptotic Perturbation Theory of Waves. London: Imperial College Press, 2015. 320 p.
- Ostrovsky L., Pelinovsky E., Shrira V., Stepanyants Y. Localized wave structures: Solitons and beyond. Chaos. 2024. Vol. 34. doi: 10.1063/5.0210903
- Trefethen L. N. Spectral Methods in MATLAB. SIAM, Philadelphia, 2000. 160 p.
- Flamarion M. V. Generation of trapped depression solitary waves in gravity-capillary flows over an obstacle Computational and Applied Mathematics. 2022. Vol. 41. doi: 10.1007/s40314-021-01734-w
- Flamarion M. V., Ribeiro-Jr R. Solitary water wave interactions for the forced Korteweg–de Vries equation. Computational and Applied Mathematics. 2021. Vol. 40. doi: 10.1007/s40314-021-01700-6
Supplementary files



