Rotation sets of SO(3)-extensions of quasiperiodic flows

Cover Page

Cite item

Full Text

Abstract

In this paper, we construct a class of special flows on a multidimensional torus and a topological invariant of such flows, i.e. a rotation set. Such flows arise while reducing linear systems of differential equations with quasiperiodic coefficients to a triangular form. In the process of such a reduction, we obtain a system of nonlinear differential equations on a multidimensional torus, which generates a projective flow induced by the original linear system. In this paper, we use known results from the theory of matrix groups and Lie algebras and construct an algorithm for SO$(n)$-extension of a quasiperiodic linear system. The resulting system of equations admits a reduction in order, which allows us to write the right-hand sides as trigonometric polynomials in Euler angles on a sphere. The case $n=3$ is considered separately. The equations defining the projective flow are written explicitly. The projective flow is defined on a torus of dimension $m+2$, where $m$ is the dimension of the original torus. The structure of this flow is determined by topological invariants of the flow. For example, a non-singular flow on a two-dimensional torus has a topological invariant - the rotation number (A. Poincare). Using M. Herman's method, it is possible to prove the existence and uniqueness of the rotation vector $(\rho_1,\rho_2)$ for the projective flow on $\T^{m+2}$. Using S. Schwartzman's theory  defining the rotation set for flows on compact metric spaces, it is shown that the component $\rho_2=0$. Here, the fact is used that the dimension of the maximal toric subalgebra of the algebra so$(3)$ is equal to one.
 

About the authors

Alexander N. Sakharov

Nizhny Novgorod State Agrarian and Technological University named after L.Ya. Florentyev

Author for correspondence.
Email: ansakharov2008@yandex.ru
ORCID iD: 0000-0002-4520-8062

Ph.D. (Phys. and Math.), Associate Professor of the Department of Applied Mechanics, Physics and Higher Mathematics

Russian Federation, 10, Sibirtseva Str., Nizhny Novgorod, 603146, Russia

References

  1. S. Schwartzman, "Asymptotic cycles", Ann. of Math, 66 (1957), 270–284.
  2. Aranson S. H., Grines V. Z., "On some invariants of dynamical systems on two-dimensional manifolds (necessary and sufficient conditions for the topological equivalence of transitive dynamical systems)", Math. Sb., 90:3 (1973), 372–402.
  3. Pollicott M., "Rotation sets for homeomorphisms and homology", Trans. Amer. Math. Soc., 331:2 (1992), 881–894.
  4. I.U. Bronshtein, Extensions of minimal transformation groups, Shtinitsa, Kishenev, 1975, 311 p.
  5. O. Perron, "Uber eine Matrixtransformatin", Math. Zeitschr, 32 (1930), 465–473.
  6. Sacker R.J., Sell G.R., "A spectral theory for linear differential systems", J. Diff. Equat., 27 (1978), P. 320–358.
  7. R. Johnson, J. Moser, "The Rotation Number for Almost Periodic Potentials", Commun. Math. Phys, 84 (1982), 403–438.
  8. M. Herman, "Une m'ethode pour minorer les exposants de Lyapounov et quelques", Commentarii Mathematici Helvetici, 58 (1983), 453–502.
  9. Vinograd R. E., "On the problem of N. P. Erugin", Differential equations, 11:4 (1975), 632–638.
  10. Johnson R.A., "Two-dimensional, almost periodic linear systems with proximal and recurrent behavio", Proceedings of American Math. Soc., 82:3 (1981), 417–422.
  11. V.V. Veremenyuk, "Existence of a rotation number for the equation ẋ = λ (t, x) with right-hand side periodic in x and almost periodic in t", Differ. equations, 27:6 (1991), 1073–1076.
  12. Perov A.I., Egle I.Yu., "On the Poincare-Danjoy theory of multidimensional differential equations", Differential Equations, 8:5 (1972), 801–810.
  13. V.A. Glavan V.A., "Analytical normal form of linear quasiperiodic systems triangular form", Differential equations and mathematical physics. Mathematical research, 1989, no. 106, 50–58.
  14. J. Humphreys, Introduction to the theory of Lie algebras and their representations, Springer-Verlag, New York-Heidelberg-Berlin, 1972, 172 p.
  15. V.I. Tkachenko, "On reducibility of linear quasiperiodic systems with bounded solutions", EJQTDE, Proc. 6th Coll. QTDE, 2000, no. 29, 11.
  16. M. Herman, "Sur la conjugaison differentiable des diffeomorphismes du cercle a des rotations", Publications mathematiques de l'I.H.E.S., 49 (1979), 2–233.
  17. H. Furstenberg, "Strict Ergodicity and Transformation of the Torus", American Journal of Mathematics, 83:4 (1961), 270–284.
  18. N. Kryloff, N. Bogoliouboff, "La theorie generale de la mesure dans son application a letude des systemes dynamiques de la mecanique non lineaire", Ann. of Math, 38 (1937), 65–113.
  19. M.L. Kolomiets, A.N. Sakharov, "Classification of projective extensions of quasiperiodic flows", Proceedings of the VII All-Russian scientific conference "Nonlinear oscillations of mechanical systems", Nizhny Novgorod, 1 (2008), 295–299.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Sakharov A.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).