Rotation sets of SO(3)-extensions of quasiperiodic flows
- Authors: Sakharov A.N.1
-
Affiliations:
- Nizhny Novgorod State Agrarian and Technological University named after L.Ya. Florentyev
- Issue: Vol 27, No 2 (2025)
- Pages: 171-184
- Section: Mathematics
- Submitted: 10.10.2025
- Accepted: 10.10.2025
- Published: 28.05.2025
- URL: https://journals.rcsi.science/2079-6900/article/view/324413
- ID: 324413
Cite item
Full Text
Abstract
About the authors
Alexander N. Sakharov
Nizhny Novgorod State Agrarian and Technological University named after L.Ya. Florentyev
Author for correspondence.
Email: ansakharov2008@yandex.ru
ORCID iD: 0000-0002-4520-8062
Ph.D. (Phys. and Math.), Associate Professor of the Department of Applied Mechanics, Physics and Higher Mathematics
Russian Federation, 10, Sibirtseva Str., Nizhny Novgorod, 603146, RussiaReferences
- S. Schwartzman, "Asymptotic cycles", Ann. of Math, 66 (1957), 270–284.
- Aranson S. H., Grines V. Z., "On some invariants of dynamical systems on two-dimensional manifolds (necessary and sufficient conditions for the topological equivalence of transitive dynamical systems)", Math. Sb., 90:3 (1973), 372–402.
- Pollicott M., "Rotation sets for homeomorphisms and homology", Trans. Amer. Math. Soc., 331:2 (1992), 881–894.
- I.U. Bronshtein, Extensions of minimal transformation groups, Shtinitsa, Kishenev, 1975, 311 p.
- O. Perron, "Uber eine Matrixtransformatin", Math. Zeitschr, 32 (1930), 465–473.
- Sacker R.J., Sell G.R., "A spectral theory for linear differential systems", J. Diff. Equat., 27 (1978), P. 320–358.
- R. Johnson, J. Moser, "The Rotation Number for Almost Periodic Potentials", Commun. Math. Phys, 84 (1982), 403–438.
- M. Herman, "Une m'ethode pour minorer les exposants de Lyapounov et quelques", Commentarii Mathematici Helvetici, 58 (1983), 453–502.
- Vinograd R. E., "On the problem of N. P. Erugin", Differential equations, 11:4 (1975), 632–638.
- Johnson R.A., "Two-dimensional, almost periodic linear systems with proximal and recurrent behavio", Proceedings of American Math. Soc., 82:3 (1981), 417–422.
- V.V. Veremenyuk, "Existence of a rotation number for the equation ẋ = λ (t, x) with right-hand side periodic in x and almost periodic in t", Differ. equations, 27:6 (1991), 1073–1076.
- Perov A.I., Egle I.Yu., "On the Poincare-Danjoy theory of multidimensional differential equations", Differential Equations, 8:5 (1972), 801–810.
- V.A. Glavan V.A., "Analytical normal form of linear quasiperiodic systems triangular form", Differential equations and mathematical physics. Mathematical research, 1989, no. 106, 50–58.
- J. Humphreys, Introduction to the theory of Lie algebras and their representations, Springer-Verlag, New York-Heidelberg-Berlin, 1972, 172 p.
- V.I. Tkachenko, "On reducibility of linear quasiperiodic systems with bounded solutions", EJQTDE, Proc. 6th Coll. QTDE, 2000, no. 29, 11.
- M. Herman, "Sur la conjugaison differentiable des diffeomorphismes du cercle a des rotations", Publications mathematiques de l'I.H.E.S., 49 (1979), 2–233.
- H. Furstenberg, "Strict Ergodicity and Transformation of the Torus", American Journal of Mathematics, 83:4 (1961), 270–284.
- N. Kryloff, N. Bogoliouboff, "La theorie generale de la mesure dans son application a letude des systemes dynamiques de la mecanique non lineaire", Ann. of Math, 38 (1937), 65–113.
- M.L. Kolomiets, A.N. Sakharov, "Classification of projective extensions of quasiperiodic flows", Proceedings of the VII All-Russian scientific conference "Nonlinear oscillations of mechanical systems", Nizhny Novgorod, 1 (2008), 295–299.
Supplementary files



