About an algorithm for solving the speed problem in linear systems with convex restrictions on phase variables and control

Cover Page

Cite item

Full Text

Abstract

The problem optimal speed control is investigated in the case when the process is described by a system of linear ordinary differential equations with nonlinear convex restrictions on phase variables and control. By moving from n-dimensional Euclidean space to Hilbert space, the optimal control problem with restrictions on phase variables and control is reduced to an optimal speed problem without restrictions. It is shown that the reachability region in the new space is a convex set. To solve the resulting problem, a modified method of separating hyperplanes is used. One of the key points of this method, on which the convergence speed of the algorithm depends, is finding the normal to the separating hyperplane. In this work, this normal at each iteration is constructed by minimizing a distance-type functional on the convex hull of points supporting the reachability set obtained at previous iterations. After finding the normal to the separating hyperplane, a hyperplane supporting the reachable region is constructed, which is then continuously transferred in increasing time and the first moment in time is found at which the supporting hyperplane reaches the given end point. This moment  is taken as the next approximation to the performance time. A theorem is formulated on the convergence of successive approximations in time to the value of the performance time and on the weak convergence of a sequence of controls to an optimal control. The algorithm is tested by solving the problem of external heating of an unlimited plate to a given temperature in a minimal time, taking into account restrictions on tensile and compressive thermal stresses. The results of a computational experiment are presented.
 

About the authors

Nikolay D. Morozkin

Ufa University of Science and Technology

Author for correspondence.
Email: MorozkinND@mail.ru
ORCID iD: 0009-0002-5051-7094

D. Sc. (Phys.-Math.)Professor, Department of Mathematical and Computer Modeling
Russian Federation, 32 Zaki-Validi St., Ufa 450076, Russia

Vladislav I. Tkachev

Ufa University of Science and Technology

Email: tvi-vlad@mail.ru
ORCID iD: 0009-0002-8461-3252

Ph. D. (Phys.-Math.), associate professor,Department of Mathematical and Computer Modeling
Russian Federation, 32 Zaki-Validi St., Ufa 450076, Russia

Nikita N. Morozkin

Ufa University of Science and Technology

Email: nnm_89@mail.ru
ORCID iD: 0009-0005-3162-5403

Ph. D. (Phys.-Math.), associate professor,Department of Mathematical and Computer Modeling

Russian Federation, 32 Zaki-Validi St., Ufa 450076, Russia

References

  1. N. N. Krasovsky, "[On one problem of regulation adjustment]", Applied Mathematics and Mechanics, 21:5 (1957), 670–677.
  2. L.W. Neustadt, "Synthesizing of Time Optimal Control Systems", Math. Anal, and Appl., 1:4 (1960), 484–992. doi: 10.1016/0022-247X(60)90015-9
  3. J. P. La Salle, "The time optimal control problem", Contribution to the Theory of Nonlinear oscillations., 5, Baltimore, 1959, 30.
  4. J. H. Eaton, "An Iterative Solution to Time Optimal Control", Math. Anal, and Appl., 5:2 (1962), 329–344.
  5. B. N. Pshenichny, "Numerical method for calculating optimal performance for linear systems", USSR Computational Mathematics and Mathematical Physics, 4:1 (1964), 52–60. doi: 10.1016/0041-5553(64)90216-2
  6. E. J. Fadden , E. G. Gilbert, "Computational Aspects of the Time-Optimal Control Problem", Computing methods in optimization problems, Academic Press, New York, 1964, 167–182.
  7. B. N. Pshenichny, L. A. Sobolenko, "Accelerated method for solving the problem of linear speed", Journal of Computational Mathematics and Mathematical Physics, 8:6 (1968), 1345–1351. doi: 10.1016/0041-5553(68)90107-9
  8. N. E. Kirin, "On one numerical method in the problem of linear speed-responses", Methods of calculations, Leningrad State University, L., 1963, 67–74.
  9. N. E. Kirin, "Computational methods of optimal control theory", 1968, 144.
  10. N. E. Kirin, "Methods of successive estimates in problems of optimization of controlled systems", 1975, 160.
  11. N. D. Morozkin, "On the convergence of some algorithms for solving the linear speed problem", Mathematical methods of analysis of controlled processes, Leningrad State University, L., 1986, 147–154.
  12. N. D. Morozkin, "Optimal control of one-dimensional heating taking into account phase constraints", Mathematical modeling, 8:3 (1996), 91-110.
  13. V. G. Boltyansky, Matematicheskaya metody optimal'nogo upravleniya [Mathematical methods of optimal control], Nauka, Moscow, 1969, 408 p.
  14. V. G. Karmanov, Matematicheskoe programmirovanie [Mathematical programming], Fizmatlit, Moscow, 2004, 264 p.
  15. F. P. Vasiliev, Metody optimizatsii [Optimization methods]. In 2 books. Part II., MCNO, Moscow, 2011, 433 p.
  16. R. P. Fedorenko, Priblizhennoe reshenie zadach optimal'nogo upravleniya [Approximate solution of optimal control problems], Nauka, Moscow, 1978, 488 p.
  17. N. D. Morozkin, "The convergence of finite-dimensional approximations in the problem of the optimal one-dimensional heating taking phase constraints into account", Comput. Math. Math. Phys., 36:10 (1996), 1331-1339.
  18. M. I. Filonenko-Borodich, Mekhanicheskie teorii prochnosti [Mechanical Theories of Strength], Moscow State University, Moscow, 1961, 92 p.
  19. V. M. Vigak, Upravleniye temperaturnymi napryazheniyami i peremeshcheniyami [Control of temperature stresses and displacements], Nauk. dumka, Kyiv, 1988, 318 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Morozkin N.D., Tkachev V.I., Morozkin N.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).