Modeling of the impact of environment inhomogeneous inclusions on the formation of geoacoustic emission zones

Capa

Citar

Texto integral

Resumo

Geoacoustic emission is the process of elastic wave generation by rocks as the result of dynamic reconstruction of their structure. Observation results show that mechanic processes, occurring in the source of a preparing earthquake, affect the geoacoustic emission dynamics. Modeling of geoacoustic emission zones, the regions of the earth crust surface with deformations of the order 10-8 – 10-5, has been earlier carried out to prove the relation between geoacoustic emission variations and the process of earthquake preparation. Results of the modeling, which was performed earlier, show that the level of calculated deformations at observation sites exceeds the tidal ones but differs by one order from the recorded deformations. This may be associated with the fact that the earth crust was considered as a homogeneous environment. In reality, the earth crust consists of rock layers, some part of which has supercritical state and manifests plastic and quasi-plastic properties. The present paper is devoted to the modeling of the earth crust inhomogeneities impact on spatial distribution of geoacoustic emission zones. Inhomogeneities are described by simple force system distributed over spherical inclusion surface. Intensity of the force action was assumed to be constant. Solutions for the boundary problem of elasticity linear theory were obtained in the form of Green’s functions convolution for homogeneous isotropic elastic half-space. Computational experiments were carried out, and lines of the field component levels of the displacement vectors of the earth crust surface were constructed. It was shown that spherical inclusions affect displacement vector field of the earth crust surface. The impact character depends on the number of inhomogeneous inclusions and their locations relative to the source of a preparing earthquake.

Texto integral

Введение

Геоакустическая эмиссия MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  это процесс генерации упругих волн горными породами в результате динамической перестройки их структуры. На ее динамику влияют различные механические процессы, протекающие в горных породах, в том числе и механические процессы в очаге готовящегося землетрясения. В ряде исследований установлено [1–5], что предсейсмический отклик наблюдается в сигналах геоакустической эмиссии, зарегистрированной на расстоянии первых сотен километров от источника землетрясения. С целью обоснования связи между вариациями геоакустической эмиссии и характером деформационного процесса ранее было проведено моделирование зон геоакустической эмиссии в упругом однородном приближении среды [6, 7]. Зона геоакустической эмиссии MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  это область поверхности земной коры с деформациями порядка от 108 до 105, вызванными процессами в очаге готовящегося землетрясения. Такие значения деформаций выше приливных, но ниже порога прочности горных пород.

Результаты ранее проведенного моделирования показывают, что уровень расчетных деформаций в пунктах наблюдений превышает приливные, но на порядок ниже зарегистрированных [6]. Это может быть результатом приближения земной коры в виде однородного пространства. В действительности земная кора состоит из слоев горных пород, часть из которых находятся в закритическом состоянии и проявляют пластические и квазипластические свойства [8, 9]. Поэтому цель настоящей работы заключается в моделировании влияния неоднородных включений на пространственное распределение зон геоакустической эмиссии.

Модель очага землетрясения. Согласно концепции, впервые предложенной Б. В. Костровым, тектоническое землетрясение представляет собой разрыв сплошности материала Земли, который возникает под действием упругих сдвиговых напряжений, накопленных в процессе тектонической деформации. Такой разрыв является разрывом скольжения.

В момент землетрясения происходит полное или частичное снятие накопленных напряжений в его очаге. Деформации, возникающие при подготовке землетрясения, обусловлены приращением потенциальной энергии упругих деформаций ΔW MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam 4vaaaa@3A49@ , вызванным процессом подготовки землетрясения. Эта энергия больше, чем высвободившаяся сейсмическая энергия E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraaaa@38D1@ . Величина η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4TdGgaaa@39B3@ , равная отношению этих энергий, определяет эффективность снятия потенциальной энергии упругих деформаций

η= E ΔW . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4TdGMaaG ypamaalaaabaGaamyraaqaaiabfs5aejaadEfaaaGaaGOlaaaa@3E4E@  (1)

Очаг землетрясения можно описать через некоторую систему сил, распределенную по поверхности разрыва. Для описания произвольно ориентированного разрыва скольжения в изотропной среде используют систему, состоящую из девяти пар двойных сил [10, 11].

Математическая постановка задачи

Уравнения и граничные условия. Рассмотрим земную кору в виде упругого изотропного полупространства. Поведение такой среды можно описать при помощи системы, состоящей из уравнений равновесия, определяющих соотношений MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  обобщенного закона Гука, а также выражений, определяющих тензор малых деформаций ε ij MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgacaWGQbaabeaaaaa@3BB7@ :

σij,j+Xi=0,σij=λδijεkk+2μεijεij=12(ui,j+uj,i)., (2)

где σ ij MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadMgacaWGQbaabeaaaaa@3BD3@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  тензор напряжений, X i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaWGPbaabeaaaaa@39FE@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  вектор массовых сил, μ,λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0MaaG ilaiabeU7aSbaa@3C27@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  коэффициенты Ламе, u i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGPbaabeaaaaa@3A1B@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  вектор смещений. Уравнения записаны в тензорной форме, индексами после запятой обозначено дифференцирование по соответствующим пространственным координатам.

Пусть полупространство занимает область x 3 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIZaaabeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0Hgi uD3BaGqbaOGae8xFQqOaaGimaaaa@4604@ . Тогда поверхность Земли задается уравнением x 3 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIZaaabeaakiaai2dacaaIWaaaaa@3B78@ . Эта поверхность свободна от напряжений в направлении оси x 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIZaaabeaaaaa@39ED@ , следовательно на x 3 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIZaaabeaakiaai2dacaaIWaaaaa@3B78@  заданы граничные условия вида:

σ 31 | x 3 =0 = σ 32 | x 3 =0 = σ 33 | x 3 =0 =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaiodacaaIXaaabeaakiaaiYhadaWgaaWcbaGaamiEamaa BaaabaGaaG4maaqabaGaaGypaiaaicdaaeqaaOGaaGypaiabeo8aZn aaBaaaleaacaaIZaGaaGOmaaqabaGccaaI8bWaaSbaaSqaaiaadIha daWgaaqaaiaaiodaaeqaaiaai2dacaaIWaaabeaakiaai2dacqaHdp WCdaWgaaWcbaGaaG4maiaaiodaaeqaaOGaaGiFamaaBaaaleaacaWG 4bWaaSbaaeaacaaIZaaabeaacaaI9aGaaGimaaqabaGccaaI9aGaaG imaiaai6caaaa@53EC@  (3)

Напряжения, создаваемые очагом готовящегося землетрясения, стремятся к нулю на бесконечности:

lim r σ ij =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabeqaaa qaamaawafabeWcbaGaamOCaiabgkziUkabg6HiLcqabOqaaiGacYga caGGPbGaaiyBaaaacqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaO GaaGypaiaaicdacaaISaaaaaaa@45C7@  (4)

где r= ( x 1 ) 2 + ( x 2 ) 2 + ( x 3 ) 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaai2 dadaGcaaqaaiaaiIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGyk amaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiIcacaWG4bWaaSbaaS qaaiaaikdaaeqaaOGaaGykamaaCaaaleqabaGaaGOmaaaakiabgUca RiaaiIcacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaGykamaaCaaale qabaGaaG4maaaaaeqaaaaa@4865@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  расстояние от точки x i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGPbaabeaaaaa@3A1E@  до начала координат.

Компоненты вектора X MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKiwaaaa@38EA@ , соответствующие системе из комбинации двойных пар сил, выражаются следующим образом:

X i = p ij δ(xξ) ξ j , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaWGPbaabeaakiaai2dacaWGWbWaaSbaaSqaaiaadMgacaWG QbaabeaakmaalaaabaGaeyOaIyRaeqiTdqMaaGikaiaajIhacqGHsi sliiWacqWF+oaEcaaIPaaabaGaeyOaIyRaeqOVdG3aaSbaaSqaaiaa dQgaaeqaaaaakiaaiYcaaaa@4B16@  (5)

где p ij MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGPbGaamOAaaqabaaaaa@3B05@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  интенсивность соответствующей пары сил; δ(xξ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqMaaG ikaiaajIhacqGHsisliiWacqWF+oaEcaaIPaaaaa@3ECC@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  дельта-функция; ξ=( ξ 1 , ξ 2 , ξ 3 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmGae8NVdG NaaGypaiaaiIcacqaH+oaEdaWgaaWcbaGaaGymaaqabaGccaaISaGa eqOVdG3aaSbaaSqaaiaaikdaaeqaaOGaaGilaiabe67a4naaBaaale aacaaIZaaabeaakiaaiMcaaaa@4589@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  точка приложения системы сил.

Аналитическое решение. Для задачи (2) с граничными условиями (3) и (4) известны решения в терминах вектора смещений u i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGPbaabeaaaaa@3A1B@  через функции Грина. Для единичной силы, приложенной к точке ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmGae8NVdG haaa@39D2@  упругого полупространства и направленной вдоль оси x 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIZaaabeaaaaa@39ED@ , функция Грина g 3 (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaK4zamaaCa aaleqabaGaaG4maaaakiaahIcacaqI4bGaaCykaaaa@3C53@  имеет вид:

g13=(x1ξ1)16πμ(1ν)(x3ξ3)r13+(34ν)(x3ξ3)r23+4(1ν)(12ν)r2(r2x3ξ3)+6x3ξ3r25,g23=(x2ξ2)16πμ(1ν)(x3ξ3)r13+(34ν)(x3ξ3)r23+4(1ν)(12ν)r2(r2x3ξ3)+6x3ξ3(x3+ξ3)r25,g33=116πμ(1ν)(34ν)r1+512ν+8ν2r2+(x3ξ3)2r13+(34ν)(x3+ξ3)22x3ξ3r23, (6)

где ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4gaaa@39BF@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  коэффициент Пуассона, а r 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaaIXaaabeaaaaa@39E5@  и r 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaaIYaaabeaaaaa@39E6@ :

r1=(x1ξ1)2+(x2ξ2)2+(x3ξ3)2,r2=(x1ξ1)2+(x2ξ2)2+(x3+ξ3)2. (7)

Функция Грина g 1 (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaK4zamaaCa aaleqabaGaaGymaaaakiaahIcacaqI4bGaaCykaaaa@3C51@  для единичной силы, направленной вдоль оси x 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIXaaabeaaaaa@39EB@ , выражается в виде:

g11=116πμ1ν34νr1+1r2+x1ξ12r23+34νx1ξ1r23+41ν12νr22x1ξ12r2x3+ξ3r2r2x3ξ32,g21=x1ξ1x2ξ216πμ1ν1r13+34νr236x3ξ3r2541ν12νr2r2x3ξ32,g31=x1ξ116πμ1νx3ξ3r13+34νx3ξ3r2341ν12νr2r2x3ξ326x3ξ3x3+ξ3r25, (8)

Ввиду симметричности задачи, функция Грина g 2 (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaK4zamaaCa aaleqabaGaaGOmaaaakiaahIcacaqI4bGaaCykaaaa@3C52@ , соответствующая действию единичной силы вдоль оси x 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIYaaabeaaaaa@39EC@ , может быть получена из функции g 1 (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaK4zamaaCa aaleqabaGaaGymaaaakiaahIcacaqI4bGaaCykaaaa@3C51@  заменой осей x 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIXaaabeaaaaa@39EB@  и x 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIYaaabeaaaaa@39EC@ . Функции Грина, отвечающие действию двойных сил, могут быть получены дифференцированием функций g i (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaK4zamaaCa aaleqabaGaamyAaaaakiaahIcacaqI4bGaaCykaaaa@3C84@  по пространственным координатам, то есть в виде g i (x)/ x j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOaIyRaaK 4zamaaCaaaleqabaGaamyAaaaakiaahIcacaqI4bGaaCykaiaai+ca cqGHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaaaa@4221@  [12]. При i=j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaai2 dacaWGQbaaaa@3AAB@  получим решение для пары двойных сил, направленных вдоль соответствующей оси, при ij MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgc Mi5kaadQgaaaa@3BAB@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  для пары двойных сил, направленных вдоль оси i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@38F5@  с моментом относительно оси с номером, отличным от i,j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaaiY cacaWGQbaaaa@3A9A@ .

В общем случае, решения для смещений в упругом полупространстве можно получить при помощи формулы Вольтерра [13]:

u k (x)= Σ s i (ξ) σ ij k (ξ,x) n j dΣ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGRbaabeaakiaaiIcacaqI4bGaaGykaiaai2dadaWdrbqa bSqaaiabfo6atbqab0Gaey4kIipakiaadohadaWgaaWcbaGaamyAaa qabaGccaaIOaaccmGae8NVdGNaaGykaiabeo8aZnaaDaaaleaacaWG PbGaamOAaaqaaiaadUgaaaGccaaIOaGae8NVdGNaaGilaiaajIhaca aIPaGaamOBamaaBaaaleaacaWGQbaabeaakiaaysW7caWGKbGaeu4O dmLaaGilaaaa@56E6@  (9)

где s i (ξ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaWGPbaabeaakiaaiIcaiiWacqWF+oaEcaaIPaaaaa@3D53@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  смещение на поверхности разрыва Σ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4Odmfaaa@398B@ , n j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaWGQbaabeaaaaa@3A15@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  единичный вектор нормали к поверхности Σ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4Odmfaaa@398B@ .

Учитывая, что напряжения могут быть выражены через деформации в соответствии с законом Гука, формула Вольтерра для случая однородной и изотропной среды может быть записана в виде:

u k (x)= Σ μ( s p n q + s q n p )+λ s k n k δ pq g k p (x,ξ) ξ q dΣ= Σ m pq g k p (x,ξ) ξ q dΣ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGRbaabeaakiaaiIcacaqI4bGaaGykaiaai2dadaWdrbqa bSqaaiabfo6atbqab0Gaey4kIipakmaadmaabaGaeqiVd0MaaGikai aadohadaWgaaWcbaGaamiCaaqabaGccaWGUbWaaSbaaSqaaiaadgha aeqaaOGaey4kaSIaam4CamaaBaaaleaacaWGXbaabeaakiaad6gada WgaaWcbaGaamiCaaqabaGccaaIPaGaey4kaSIaeq4UdWMaam4Camaa BaaaleaacaWGRbaabeaakiaad6gadaWgaaWcbaGaam4AaaqabaGccq aH0oazdaWgaaWcbaGaamiCaiaadghaaeqaaaGccaGLBbGaayzxaaWa aSaaaeaacqGHciITcaWGNbWaa0baaSqaaiaadUgaaeaacaWGWbaaaO GaaGikaiaajIhacaaISaaccmGae8NVdGNaaGykaaqaaiabgkGi2kab e67a4naaBaaaleaacaWGXbaabeaaaaGccaaMe8Uaamizaiabfo6atj aai2dadaWdrbqabSqaaiabfo6atbqab0Gaey4kIipakiaad2gadaWg aaWcbaGaamiCaiaadghaaeqaaOWaaSaaaeaacqGHciITcaWGNbWaa0 baaSqaaiaadUgaaeaacaWGWbaaaOGaaGikaiaajIhacaaISaGae8NV dGNaaGykaaqaaiabgkGi2kabe67a4naaBaaaleaacaWGXbaabeaaaa GccaaMe8Uaamizaiabfo6atjaaiYcaaaa@85FD@  (10)

где m pq =μ( s p n q + s q n p )+λ s k n k δ pq MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaaBa aaleaacaWGWbGaamyCaaqabaGccaaI9aGaeqiVd0MaaGikaiaadoha daWgaaWcbaGaamiCaaqabaGccaWGUbWaaSbaaSqaaiaadghaaeqaaO Gaey4kaSIaam4CamaaBaaaleaacaWGXbaabeaakiaad6gadaWgaaWc baGaamiCaaqabaGccaaIPaGaey4kaSIaeq4UdWMaam4CamaaBaaale aacaWGRbaabeaakiaad6gadaWgaaWcbaGaam4AaaqabaGccqaH0oaz daWgaaWcbaGaamiCaiaadghaaeqaaaaa@52EB@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  тензор плотности сейсмического момента [10], который отражает механику очага землетрясения.

Таким образом, в случае точечного источника, решение поставленной задачи может быть найдено в следующем виде:

u k (x)= m pq g k p (x,ξ) ξ q S Σ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGRbaabeaakiaaiIcacaqI4bGaaGykaiaai2dacaWGTbWa aSbaaSqaaiaadchacaWGXbaabeaakmaalaaabaGaeyOaIyRaam4zam aaDaaaleaacaWGRbaabaGaamiCaaaakiaaiIcacaqI4bGaaCilaGGa diab=57a4jaaiMcaaeaacqGHciITcqaH+oaEdaWgaaWcbaGaamyCaa qabaaaaOGaam4uamaaBaaaleaacqqHJoWuaeqaaOGaaGilaaaa@516C@  (11)

где S Σ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacqqHJoWuaeqaaaaa@3A8F@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  площадь поверхности силового воздействия Σ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4Odmfaaa@398B@ .

Поскольку связь между компонентами тензора деформации ε ij MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgacaWGQbaabeaaaaa@3BB7@  и потенциальной энергией упругих деформаций E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraaaa@38D1@  квадратична, то повышающий коэффициент, позволяющий рассчитать напряженно-деформированное состояние земной коры при подготовке землетрясения, будем полагать равным η 0.5 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4TdG2aaW baaSqabeaacqGHsislcaaIWaGaaGOlaiaaiwdaaaaaaa@3CFE@ . Удобный, с точки зрения вычислений, вариант оценки этого коэффициента был дан И. П. Добровольским [14]:

η =10 0.26 M W 3.93 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4TdGMaaG ypaiaaigdacaaIWaWaaWbaaSqabeaacaaIWaGaaGOlaiaaikdacaaI 2aGaamytamaaBaaabaGaam4vaaqabaGaeyOeI0IaaG4maiaai6caca aI5aGaaG4maaaakiaaiYcaaaa@457B@  (12)

где M W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWGxbaabeaaaaa@39E1@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  моментная магнитуда землетрясения.

Неоднородное включение в земной коре. Область земной коры, обладающую неупругими свойствами можно описать через систему сил, распределенную по ее границе. Подобное силовое воздействие характерно для слоев горных пород, находящихся в закритическом состоянии и проявляющих пластические свойства.

Будем полагать, что неоднородное включение Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3995@  имеет сферическую форму радиуса R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaaaa@38DE@  с границей Γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdCeaaa@396F@  (рис. 1), которая задана функцией F( x 1 , x 2 , x 3 )=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadIhadaWgaaWc baGaaGOmaaqabaGccaaISaGaamiEamaaBaaaleaacaaIZaaabeaaki aaiMcacaaI9aGaaGimaaaa@42F1@ :

( x 1 c 1 ) 2 + ( x 2 c 2 ) 2 + ( x 3 c 3 ) 2 = R 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWGJbWaaSbaaSqaaiaa igdaaeqaaOGaaGykamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiI cacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0Iaam4yamaaBaaa leaacaaIYaaabeaakiaaiMcadaahaaWcbeqaaiaaikdaaaGccqGHRa WkcaaIOaGaamiEamaaBaaaleaacaaIZaaabeaakiabgkHiTiaadoga daWgaaWcbaGaaG4maaqabaGccaaIPaWaaWbaaSqabeaacaaIYaaaaO GaaGypaiaadkfadaahaaWcbeqaaiaaikdaaaGccaaISaaaaa@523C@  (13)

где ( c 1 , c 2 , c 3 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaado gadaWgaaWcbaGaaGymaaqabaGccaaISaGaam4yamaaBaaaleaacaaI YaaabeaakiaaiYcacaWGJbWaaSbaaSqaaiaaiodaaeqaaOGaaGykaa aa@4066@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  центр сферического включения.

 

Рис. 1. Сферическое включение Ω, ограниченное поверхностью Γ с центром в точке (c1,c2,c3), на которой заданы простые силы интенсивности P (🡪) по направлению внешней нормали.

[Figure 1. Spherical inclusion Ω, limited by the surface Γ with the center at the point (c1,c2,c3), on which simple forces of intensity P (🡪) are specified in the direction of the outer normal. ]

 

Пусть на поверхности Γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdCeaaa@396F@  в каждой точке заданы простые силы интенсивности P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaaaa@38DC@ , действующие по направлению внешней нормали ζ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmGae8NTdO haaa@39CC@ . Решение для поля перемещений u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDaaaa@3907@  может быть найдено в виде поверхностного интеграла от функций Грина:

u i (x)=P Γ g i j (x,ξ) ζ j (ξ)dΓ(ξ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGPbaabeaakiaaiIcacaqI4bGaaGykaiaai2dacaWGqbWa a8qvaeqaleaacqqHtoWraeqaniablgH7rlabgUIiYdGccaWGNbWaa0 baaSqaaiaadMgaaeaacaWGQbaaaOGaaGikaiaajIhacaaISaaccmGa e8NVdGNaaGykaiabeA7a6naaBaaaleaacaWGQbaabeaakiaaiIcacq WF+oaEcaaIPaGaamizaiabfo5ahjaaiIcacqWF+oaEcaaIPaGaaGOl aaaa@5865@  (14)

Преобразуя интеграл (14) при помощи формулы Остроградского-Гаусса [15], получим

u i (x)=P Γ g i j (x,ξ) ζ j (ξ)dΓ(ξ)=P Ω g i j (x,ξ) ξ j dV(ξ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGPbaabeaakiaaiIcacaqI4bGaaGykaiaai2dacaWGqbWa a8qvaeqaleaacqqHtoWraeqaniablgH7rlabgUIiYdGccaWGNbWaa0 baaSqaaiaadMgaaeaacaWGQbaaaOGaaGikaiaajIhacaaISaaccmGa e8NVdGNaaGykaiabeA7a6naaBaaaleaacaWGQbaabeaakiaaiIcacq WF+oaEcaaIPaGaamizaiabfo5ahjaaiIcacqWF+oaEcaaIPaGaaGyp aiaadcfadaWdrbqabSqaaiabfM6axbqab0Gaey4kIipakmaalaaaba GaeyOaIyRaam4zamaaDaaaleaacaWGPbaabaGaamOAaaaakiaaiIca caqI4bGaaGilaiab=57a4jaaiMcaaeaacqGHciITcqaH+oaEdaWgaa WcbaGaamOAaaqabaaaaOGaamizaiaadAfacaaIOaGae8NVdGNaaGyk aiaai6caaaa@706B@  (15)

Для упрощения интегрирования перейдем в сферическую систему координат (r,θ,φ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadk hacaaISaGaeqiUdeNaaGilaiabeA8aQjaaiMcaaaa@3F42@ :

ξ 1 (r,θ,φ)=rsinθcosφ, ξ 2 (r,θ,φ)=rsinθsinφ, ξ 3 (r,θ,φ)=rcosθ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaeaafa qabeWabaaabaGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaaGikaiaa dkhacaaISaGaeqiUdeNaaGilaiabeA8aQjaaiMcacaaI9aGaamOCai GacohacaGGPbGaaiOBaiabeI7aXjGacogacaGGVbGaai4CaiabeA8a QjaaiYcaaeaacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccaaIOaGaam OCaiaaiYcacqaH4oqCcaaISaGaeqOXdOMaaGykaiaai2dacaWGYbGa ci4CaiaacMgacaGGUbGaeqiUdeNaci4CaiaacMgacaGGUbGaeqOXdO MaaGilaaqaaiabe67a4naaBaaaleaacaaIZaaabeaakiaaiIcacaWG YbGaaGilaiabeI7aXjaaiYcacqaHgpGAcaaIPaGaaGypaiaadkhaci GGJbGaai4BaiaacohacqaH4oqCcaaIUaaaaaGaay5Eaaaaaa@7528@  (16)

Производя замену переменных интегрирования (16) в объемном интеграле (15), получим

u i (x)=P Ω g i j (x,ξ) ξ j dV(ξ)=P 0 R dr 0 π dθ 0 2π g i,j j (x,r,θ,φ)(r,θ,ϕ)dφ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGPbaabeaakiaaiIcacaqI4bGaaGykaiaai2dacaWGqbWa a8quaeqaleaacqqHPoWvaeqaniabgUIiYdGcdaWcaaqaaiabgkGi2k aadEgadaqhaaWcbaGaamyAaaqaaiaadQgaaaGccaaIOaGaaKiEaiaa iYcaiiWacqWF+oaEcaaIPaaabaGaeyOaIyRaeqOVdG3aaSbaaSqaai aadQgaaeqaaaaakiaadsgacaWGwbGaaGikaiab=57a4jaaiMcacaaI 9aGaamiuamaapehabeWcbaGaaGimaaqaaiaadkfaa0Gaey4kIipaki aadsgacaWGYbWaa8qCaeqaleaacaaIWaaabaGaeqiWdahaniabgUIi YdGccaWGKbGaeqiUde3aa8qCaeqaleaacaaIWaaabaGaaGOmaiabec 8aWbqdcqGHRiI8aOGaam4zamaaDaaaleaacaWGPbGaaGilaiaadQga aeaacaWGQbaaaOGaaGikaiaajIhacaaISaGaamOCaiaaiYcacqaH4o qCcaaISaGaeqOXdOMaaGykaiaaysW7cqGHresWcaaIOaGaamOCaiaa iYcacqaH4oqCcaaISaGaeqy1dyMaaGykaiaaysW7caWGKbGaeqOXdO MaaGilaaaa@8626@  (17)

где (r,θ,φ)= r 2 sinθ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyyeHeSaaG ikaiaadkhacaaISaGaeqiUdeNaaGilaiabeA8aQjaaiMcacaaI9aGa amOCamaaCaaaleqabaGaaGOmaaaakiGacohacaGGPbGaaiOBaiabeI 7aXbaa@4800@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  якобиан.

Результаты моделирования

Вычислительный эксперимент №1. Вычисления во всех экспериментах производятся на поверхности x 3 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIZaaabeaakiaai2dacaaIWaaaaa@3B78@ . Параметры гипотетического землетрясения следующие: координаты ξ 1 =12 10 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaS baaSqaaiaaigdaaeqaaOGaaGypaiaaigdacaaIYaGaeyyXICTaaGym aiaaicdadaahaaWcbeqaaiaaiodaaaaaaa@41A2@  м, ξ 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaS baaSqaaiaaikdaaeqaaOGaaGypaiaaicdaaaa@3C3D@  м, ξ 3 =15 10 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaS baaSqaaiaaiodaaeqaaOGaaGypaiabgkHiTiaaigdacaaI1aGaeyyX ICTaaGymaiaaicdadaahaaWcbeqaaiaaiodaaaaaaa@4294@  м, тензор плотности сейсмического момента

m pq = 1,450 0,675 4,550 0,675 0,281 2,120 4,550 2,120 1,730 10 15 Нм. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaaBa aaleaacaWGWbGaamyCaaqabaGccaaI9aWaamWaaeaafaqabeWadaaa baGaeyOeI0IaaGymaiaaiYcacaaI0aGaaGynaiaaicdaaeaacqGHsi slcaaIWaGaaGilaiaaiAdacaaI3aGaaGynaaqaaiaaisdacaaISaGa aGynaiaaiwdacaaIWaaabaGaeyOeI0IaaGimaiaaiYcacaaI2aGaaG 4naiaaiwdaaeaacqGHsislcaaIWaGaaGilaiaaikdacaaI4aGaaGym aaqaaiaaikdacaaISaGaaGymaiaaikdacaaIWaaabaGaaGinaiaaiY cacaaI1aGaaGynaiaaicdaaeaacaaIYaGaaGilaiaaigdacaaIYaGa aGimaaqaaiaaigdacaaISaGaaG4naiaaiodacaaIWaaaaaGaay5wai aaw2faaiabgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaIXaGaaGyn aaaakiaab2bbcqGHflY1caqG8qGaaGOlaaaa@6C6F@  (18)

Параметры неоднородного включения: координаты центра c 1 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIXaaabeaakiaai2dacaaIWaaaaa@3B61@  м, c 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIYaaabeaakiaai2dacaaIWaaaaa@3B62@  м, c 3 =5 10 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIZaaabeaakiaai2dacqGHsislcaaI1aGaeyyXICTaaGym aiaaicdadaahaaWcbeqaaiaaiodaaaaaaa@40FE@  м, радиус R=4 10 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaai2 dacaaI0aGaeyyXICTaaGymaiaaicdadaahaaWcbeqaaiaaiodaaaaa aa@3F0C@  м, величина силы P=2 10 6 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaai2 dacaaIYaGaeyyXICTaaGymaiaaicdadaahaaWcbeqaaiaaiAdaaaaa aa@3F0B@  Н. Результаты моделирования в виде компонентов вектора смещений на поверхности x 3 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIZaaabeaakiaai2dacaaIWaaaaa@3B78@  представлены на рис. 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  4.

 

Рис. 2. Результат вычислительного эксперимента №1. Компонент u1 вектора смещений на поверхности x3 = 0 в случае однородной среды (a) и при наличии сферической неоднородности (b); 🟠 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuqajugGbabaaaaaaaaapeGaa8hfGaaa@3A96@  проекция сферической неоднородности на поверхность x3 = 0.

[Figure 2. Result of the computational experiment №1. Component u1 of the shift vector on the surface x3 = 0 in case of homogeneous environment (a) and with a spherical inhomogeneity (b); 🟠 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuqajugGbabaaaaaaaaapeGaa8hfGaaa@3A96@  projection of the spherical inhomogeneity on the surface x3 = 0. ]

 

Рис. 3. Результат вычислительного эксперимента №1. Компонент u2 вектора смещений на поверхности x3 = 0 в случае однородной среды (a) и при наличии сферической неоднородности (b); 🟠 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuqajugGbabaaaaaaaaapeGaa8hfGaaa@3A96@  проекция сферической неоднородности на поверхность x3 = 0.

[Figure 3. Result of the computational experiment №1. Component u2 of the shift vector on the surface x3 = 0 in case of homogeneous environment (a) and with a spherical inhomogeneity (b); 🟠 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuqajugGbabaaaaaaaaapeGaa8hfGaaa@3A96@  projection of the spherical inhomogeneity on the surface x3 = 0.]

 

Рис. 4. Результат вычислительного эксперимента №1. Компонент u3 вектора смещений на поверхности x3 = 0 в случае однородной среды (a) и при наличии сферической неоднородности (b); 🟠 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuqajugGbabaaaaaaaaapeGaa8hfGaaa@3A96@  проекция сферической неоднородности на поверхность x3 = 0.

[Figure 4. Result of the computational experiment №1. Component u3 of the shift vector on the surface x3 = 0 in case of homogeneous environment (a) and with a spherical inhomogeneity (b); 🟠 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuqajugGbabaaaaaaaaapeGaa8hfGaaa@3A96@  projection of the spherical inhomogeneity on the surface x3 = 0.]

 

Вычислительный эксперимент №2. Параметры гипотетического землетрясения следующие: координаты ξ 1 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaS baaSqaaiaaigdaaeqaaOGaaGypaiaaicdaaaa@3C3C@  м, ξ 2 =5 10 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaS baaSqaaiaaikdaaeqaaOGaaGypaiaaiwdacqGHflY1caaIXaGaaGim amaaCaaaleqabaGaaG4maaaaaaa@40EB@  м, ξ 3 =30 10 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaS baaSqaaiaaiodaaeqaaOGaaGypaiabgkHiTiaaiodacaaIWaGaeyyX ICTaaGymaiaaicdadaahaaWcbeqaaiaaiodaaaaaaa@4291@  м, тензор плотности сейсмического момента

m pq = 0,060 0,560 0,300 0,560 1,500 1,240 0,300 1,240 1,440 10 16 Нм. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaaBa aaleaacaWGWbGaamyCaaqabaGccaaI9aWaamWaaeaafaqabeWadaaa baGaaGimaiaaiYcacaaIWaGaaGOnaiaaicdaaeaacqGHsislcaaIWa GaaGilaiaaiwdacaaI2aGaaGimaaqaaiaaicdacaaISaGaaG4maiaa icdacaaIWaaabaGaeyOeI0IaaGimaiaaiYcacaaI1aGaaGOnaiaaic daaeaacqGHsislcaaIXaGaaGilaiaaiwdacaaIWaGaaGimaaqaaiaa igdacaaISaGaaGOmaiaaisdacaaIWaaabaGaaGimaiaaiYcacaaIZa GaaGimaiaaicdaaeaacaaIXaGaaGilaiaaikdacaaI0aGaaGimaaqa aiaaigdacaaISaGaaGinaiaaisdacaaIWaaaaaGaay5waiaaw2faai abgwSixlaaigdacaaIWaWaaWbaaSqabeaacaaIXaGaaGOnaaaakiaa b2bbcqGHflY1caqG8qGaaGOlaaaa@6B58@  (19)

Параметры неоднородного включения: координаты центра c 1 =15 10 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIXaaabeaakiaai2dacaaIXaGaaGynaiabgwSixlaaigda caaIWaWaaWbaaSqabeaacaaIZaaaaaaa@40CA@  м, c 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIYaaabeaakiaai2dacaaIWaaaaa@3B62@  м, c 3 =8 10 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIZaaabeaakiaai2dacqGHsislcaaI4aGaeyyXICTaaGym aiaaicdadaahaaWcbeqaaiaaiodaaaaaaa@4101@  м, радиус R=7 10 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaai2 dacaaI3aGaeyyXICTaaGymaiaaicdadaahaaWcbeqaaiaaiodaaaaa aa@3F0F@  м, величина силы P=5 10 6 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaai2 dacaaI1aGaeyyXICTaaGymaiaaicdadaahaaWcbeqaaiaaiAdaaaaa aa@3F0E@  Н. Результаты моделирования в виде компонентов вектора смещений на поверхности x 3 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIZaaabeaakiaai2dacaaIWaaaaa@3B78@  представлены на рис. 5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  7.

 

Рис. 5. Результат вычислительного эксперимента №2. Компонент u1 вектора смещений на поверхности x3 = 0 в случае однородной среды (a) и при наличии сферической неоднородности (b); 🟠 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuqajugGbabaaaaaaaaapeGaa8hfGaaa@3A96@  проекция сферической неоднородности на поверхность x3 = 0.

[Figure 5. Result of the computational experiment 2. Component u1 of the shift vector on the surface x3 = 0 in case of homogeneous environment (a) and with a spherical inhomogeneity (b); 🟠 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuqajugGbabaaaaaaaaapeGaa8hfGaaa@3A96@  projection of the spherical inhomogeneity on the surface x3 = 0.]

 

Рис. 6. Результат вычислительного эксперимента №2. Компонент u2 вектора смещений на поверхности x3 = 0 в случае однородной среды (a) и при наличии сферической неоднородности (b); 🟠 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuqajugGbabaaaaaaaaapeGaa8hfGaaa@3A96@  проекция сферической неоднородности на поверхность x3 = 0.

[Figure 6. Result of the computational experiment №2. Component u2 of the shift vector on the surface x3 = 0 in case of homogeneous environment (a) and with a spherical inhomogeneity (b); 🟠 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuqajugGbabaaaaaaaaapeGaa8hfGaaa@3A96@  projection of the spherical inhomogeneity on the surface x3 = 0.]

 

Рис. 7. Результат вычислительного эксперимента №2. Компонент u3 вектора смещений на поверхности x3 = 0 в случае однородной среды (a) и при наличии сферической неоднородности (b); 🟠 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuqajugGbabaaaaaaaaapeGaa8hfGaaa@3A96@  проекция сферической неоднородности на поверхность x3 = 0.

[Figure 7. Result of the computational experiment №2. Component u3 of the shift vector on the surface x3 = 0 in case of homogeneous environment (a) and with a spherical inhomogeneity (b); 🟠 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuqajugGbabaaaaaaaaapeGaa8hfGaaa@3A96@  projection of the spherical inhomogeneity on the surface x3 = 0.]

 

Вычислительный эксперимент №3. Все параметры эксперимента идентичны предыдущему. Добавлено второе неоднородное включение с центром в точке c 1 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIXaaabeaakiaai2dacaaIWaaaaa@3B61@  м, c 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIYaaabeaakiaai2dacaaIWaaaaa@3B62@  м, c 3 =5 10 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIZaaabeaakiaai2dacqGHsislcaaI1aGaeyyXICTaaGym aiaaicdadaahaaWcbeqaaiaaiodaaaaaaa@40FE@  м и величиной силы P=5 10 6 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaai2 dacaaI1aGaeyyXICTaaGymaiaaicdadaahaaWcbeqaaiaaiAdaaaaa aa@3F0E@  Н. Результаты моделирования в виде компонентов вектора смещений на поверхности x 3 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIZaaabeaakiaai2dacaaIWaaaaa@3B78@  представлены на рис. 8 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  10.

 

Рис. 8. Результат вычислительного эксперимента №3. Компонент u1 вектора смещений на поверхности x3 = 0 в случае однородной среды (a) и при наличии сферической неоднородности (b); 🟠 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuqajugGbabaaaaaaaaapeGaa8hfGaaa@3A96@  проекция сферической неоднородности на поверхность x3 = 0.

[Figure 8. Result of the computational experiment №3. Component u1 of the shift vector on the surface x3 = 0 in case of homogeneous environment (a) and with a spherical inhomogeneity (b); 🟠 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuqajugGbabaaaaaaaaapeGaa8hfGaaa@3A96@  projection of the spherical inhomogeneity on the surface x3 = 0.]

 

Рис. 9. Результат вычислительного эксперимента №3. Компонент u2 вектора смещений на поверхности x3 = 0 в случае однородной среды (a) и при наличии сферической неоднородности (b); 🟠 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuqajugGbabaaaaaaaaapeGaa8hfGaaa@3A96@  проекция сферической неоднородности на поверхность x3 = 0.

[Figure 9. Result of the computational experiment №3. Component u2 of the shift vector on the surface x3 = 0 in case of homogeneous environment (a) and with a spherical inhomogeneity (b); 🟠 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuqajugGbabaaaaaaaaapeGaa8hfGaaa@3A96@  projection of the spherical inhomogeneity on the surface x3 = 0.]

 

Рис. 10. Результат вычислительного эксперимента №3. Компонент u3 вектора смещений на поверхности x3 = 0 в случае однородной среды (a) и при наличии сферической неоднородности (b); 🟠 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuqajugGbabaaaaaaaaapeGaa8hfGaaa@3A96@  проекция сферической неоднородности на поверхность x3 = 0.

[Figure 10. Result of the computational experiment №3. Component u3 of the shift vector on the surface x3 = 0 in case of homogeneous environment (a) and with a spherical inhomogeneity (b); 🟠 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuqajugGbabaaaaaaaaapeGaa8hfGaaa@3A96@  projection of the spherical inhomogeneity on the surface x3 = 0.]

 

Обсуждение результатов. Как показывают результаты моделирования, наличие неоднородных включения в среде оказывает влияние на смещения поверхности земной коры. Наблюдается, например, «экранирование» части области поверхности земной коры (рис. 8b), которое выражается в уменьшении абсолютного значения компонентов вектора смещений. Это может быть одной из причиной несогласованности результатов наблюдений геоакустической эмиссии и результатов моделирования в случае однородной среды.

 

Заключение

Произведено моделирование влияния неоднородного строения земной коры на зоны геоакустической эмиссии. Неоднородности описываются системой сил, распределенной по поверхности сферического включения. Решения получены в виде свертки функций Грина для упругого полупространства. Показано, что сферические включения оказывают влияние на поле вектора смещений поверхности земной коры. Может наблюдаться как увеличение, так и уменьшение абсолютного значения компонентов вектора смещений в зависимости от количества неоднородных включений и их расположения относительно очага готовящегося землетрясения.

В настоящей работе величина P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaaaa@38DC@  сосредоточенных сил, распределенных по поверхности неоднородного включения, полагалась постоянной. В реальности же будет наблюдаться зависимость от пространственных координат, т. е. P=P(ξ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaai2 dacaWGqbGaaGikaGGadiab=57a4jaaiMcaaaa@3DA8@ . Построение такой модели может являться дальнейшим направлением развития работы.

×

Sobre autores

Maksim Gapeev

Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS

Autor responsável pela correspondência
Email: gapeev.sci@yandex.ru
ORCID ID: 0000-0001-5798-7166

Junior Researcher, Lab. of Acoustic Research

Rússia, 684034, Paratunka, Mirnaya Str., 7

Aleksandra Solodchuk

Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS

Email: gapeev.sci@yandex.ru
ORCID ID: 0000-0002-6761-8978

Ph. D. (Phys. & Math.), Senior Researcher, Lab. of Acoustic Research, Scientific Secretary

Rússia, 684034, Paratunka, Mirnaya Str., 7

Bibliografia

  1. Sobolev G. A., Lyubushin A. A. Microseismic impulses as earthquake precursors, Izvestiya, Physics of the Solid Earth, 2006, vol. 42, no. 9, pp. 721-733. doi: 10.1134/S1069351306090023.
  2. Marapulets Y. V., et. al. Geoacoustic emission response to deformation processes activation during earthquake preparation, Russ. J. of Pac. Geol, 2012, no. 6, 457–464. doi: 10.1134/S1819714012060048.
  3. Lukovenkova O., Marapulets Yu., Solodchuk A. Adaptive approach to time-frequency analysis of AE signals of rocks, Sensors, 2022, vol. 22, no. 24:9798, pp. 1–13. doi: 10.3390/s22249798.
  4. Gregori G.P., et. al. “Storms of crustal stress” and AE earthquake precursors, Natural Haz. and Earth Sys. Sci., 2010. vol. 10, no. 2, pp. 319–337. doi: 10.5194/nhess-10-319-2010.
  5. Morgunov V. A., Lyubashevsky M. N., Fabricius V. Z., Fabricius Z. E. Geoacoustic harbinger of the Spitak earthquake, Jour. of Volcan. and Seism., 1991. No. 4, pp. 104-106 (In Russian)
  6. Gapeev M., Marapulets Y. Modeling locations with enhanced Earth’s crust deformation during earthquake preparation near the Kamchatka peninsula, Applied Sciences, 2022, vol. 13, no. 1. 290, doi: 10.3390/app13010290.
  7. Perezhogin A. S., Shevtsov B. M. Models of an intense-deformed condition of rocks before earthquakes and their correlation with geo-acoustic emission, Computational Technologies, 2009, vol. 14, no. 3, pp. 48–57, (In Russian)
  8. Rebetsky Yu. L., Lermontova A. S. Registration of supercritical conditions of geologic environment and challenges in earthquake source remote sensing, Vestnik KRAUNTs. Nauki o Zemle, 2016, no. 4, pp. 115–123, (In Russian)
  9. Rebetsky Yu. L., Lermontova A. S. On the long-range influence of earthquake rupture zones, Journal of Volcanology and Seismology, 2018, vol. 12, no. 5, pp. 341–352.
  10. Aki K., Richards P. Quantitative Seismology, Cambridge, Univ. Sci. Books, 2002, 704 p.
  11. Sholz C. The Mechanics of Earthquakes and Faulting. Cambridge, Cambr. Univ. Press, 2019, 512 p.
  12. Lurie A. I. Theory of elasticity [Teoriya uprugosti], Moscow, Nauka, 1970, 940 p. (In Russian)
  13. Segall P. Earthquake and volcano deformation, Princeton, Princ. Univ. Press, 2010, 456 p.
  14. Dobrovol’skiy I.P. Mathematical theory of prediction and preparation of a tectonic earthquake [Matematicheskaya teoriya podgotovki i prognoza tektonicheskogo zemletryaseniya], Moscow, FIZMATLIT, 2009, 240 p. (In Russian)
  15. Korn G., Korn T. Mathematical handbook for scientists and engineers: definitions, theorems, and formulas for reference and review, N-Y, Dover Publications, 2013, 1152 p.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. [Figure 1. Spherical inclusion Ω, limited by the surface Γ with the center at the point (c1,c2,c3), on which simple forces of intensity P (🡪) are specified in the direction of the outer normal. ]

Baixar (101KB)
3. [Figure 2. Result of the computational experiment №1. Component u1 of the shift vector on the surface x3 = 0 in case of homogeneous environment (a) and with a spherical inhomogeneity (b); 🟠  projection of the spherical inhomogeneity on the surface x3 = 0. ]

Baixar (705KB)
4. [Figure 3. Result of the computational experiment №1. Component u2 of the shift vector on the surface x3 = 0 in case of homogeneous environment (a) and with a spherical inhomogeneity (b); 🟠  projection of the spherical inhomogeneity on the surface x3 = 0.]

Baixar (530KB)
5. [Figure 4. Result of the computational experiment №1. Component u3 of the shift vector on the surface x3 = 0 in case of homogeneous environment (a) and with a spherical inhomogeneity (b); 🟠  projection of the spherical inhomogeneity on the surface x3 = 0.]

Baixar (393KB)
6. [Figure 5. Result of the computational experiment 2. Component u1 of the shift vector on the surface x3 = 0 in case of homogeneous environment (a) and with a spherical inhomogeneity (b); 🟠  projection of the spherical inhomogeneity on the surface x3 = 0.]

Baixar (713KB)
7. [Figure 6. Result of the computational experiment №2. Component u2 of the shift vector on the surface x3 = 0 in case of homogeneous environment (a) and with a spherical inhomogeneity (b); 🟠  projection of the spherical inhomogeneity on the surface x3 = 0.]

Baixar (669KB)
8. [Figure 7. Result of the computational experiment №2. Component u3 of the shift vector on the surface x3 = 0 in case of homogeneous environment (a) and with a spherical inhomogeneity (b); 🟠  projection of the spherical inhomogeneity on the surface x3 = 0.]

Baixar (533KB)
9. [Figure 8. Result of the computational experiment №3. Component u1 of the shift vector on the surface x3 = 0 in case of homogeneous environment (a) and with a spherical inhomogeneity (b); 🟠  projection of the spherical inhomogeneity on the surface x3 = 0.]

Baixar (632KB)
10. [Figure 9. Result of the computational experiment №3. Component u2 of the shift vector on the surface x3 = 0 in case of homogeneous environment (a) and with a spherical inhomogeneity (b); 🟠  projection of the spherical inhomogeneity on the surface x3 = 0.]

Baixar (573KB)
11. [Figure 10. Result of the computational experiment №3. Component u3 of the shift vector on the surface x3 = 0 in case of homogeneous environment (a) and with a spherical inhomogeneity (b); 🟠  projection of the spherical inhomogeneity on the surface x3 = 0.]

Baixar (563KB)

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».