Correction of oxidative stress with glutathione-based agents in women with hyperproliferative diseases living in radiation-contaminated areas: A prospective study
- Authors: Krikunova L.I.1, Mkrtchian L.S.1,2, Zamulaeva I.A.1,3, Yakimova A.O.1, Dzikovskaya L.A.1, Degtiareva E.S.1, Khailova Z.V.1, Ivanov S.A.1,4, Kaprin A.D.4,5,6
-
Affiliations:
- Tsyb Medical Radiological Research Center – branch of the National Medical Research Radiological Centre
- Obninsk Institute for Nuclear Power Engineering
- Joint Institute for Nuclear Research
- Patrice Lumumba Peoples’ Friendship University of Russia
- Hertsen Moscow Oncology Research Institute – branch of the National Medical Research Radiological Centre
- National Medical Research Radiological Centre
- Issue: Vol 27, No 2 (2025)
- Pages: 121-128
- Section: ORIGINAL ARTICLE
- URL: https://journals.rcsi.science/2079-5831/article/view/310760
- DOI: https://doi.org/10.26442/20795696.2025.2.203292
- ID: 310760
Cite item
Full Text
Abstract
Background. Women living in the territories of the Russian Federation contaminated with radionuclides as a result of the accident at the Chernobyl nuclear power plant are exposed to a complex of environmental, psychological, and socio-economic factors. The high prevalence of hyperproliferative diseases (HPD) reported in this population may be due to, among other things, the oxidative stress, which initiates carcinogenesis. In these settings, the search for drugs that adjust the antioxidant system can be not only an effective strategy for non-hormonal accompanying therapy, but also the key to the pathogenetic prevention of malignant neoplasms.
Aim. To study the effectiveness of liposomal glutathione in the correction of oxidative stress in women living in radiation-contaminated areas and the possibility of its use in the supportive therapy of HPD of the reproductive system and thyroid gland.
Materials and methods. The study included 25 women living in radionuclide-contaminated areas of the Russian Federation with HPD of the reproductive system and thyroid gland: benign mammary dysplasia, adenomyosis, uterine fibroids, chronic autoimmune thyroiditis, etc. All patients received supportive therapy with liposomal glutathione (Smartlife LLC) at 150 mg daily for 60 days. During the therapy, the clinical and radiological change of the pathological process, as well as indicators of the oxidative system of the body – malonic dialdehyde and general antioxidative activity – were studied.
Results. It was shown that during the therapy with the drug, in the blood plasma, there was a decrease in elevated concentrations of the oxidative stress marker, malonic dialdehyde (p=0.000036), and an increase in total antioxidant activity (p=0.022), which was associated with a decrease in the number of cases of chronic autoimmune thyroiditis (p=0.021), diffuse benign mammary dysplasia (p<0.001), as well as partial regression of internal endometriosis (p<0.001).
Conclusion. The use of liposomal glutathione in women with combined thyroid and breast diseases, with and without estrogen-dependent gynecological diseases, contributed to a decrease in the level of inflammation, which led to a favorable treatment outcome. The data obtained show the prospects of further research to assess the effectiveness of such universal antioxidants in cases of oxidative stress: involutive changes, obesity, adverse environmental conditions, chronic anovulatory conditions, persistent infection of the human papillomavirus, chronic stress, etc.
Full Text
##article.viewOnOriginalSite##About the authors
Liudmila I. Krikunova
Tsyb Medical Radiological Research Center – branch of the National Medical Research Radiological Centre
Author for correspondence.
Email: liana6969@mail.ru
ORCID iD: 0000-0003-1842-156X
D. Sci. (Med.), Prof.
Russian Federation, Obninsk
Liana S. Mkrtchian
Tsyb Medical Radiological Research Center – branch of the National Medical Research Radiological Centre; Obninsk Institute for Nuclear Power Engineering
Email: liana6969@mail.ru
ORCID iD: 0000-0002-5027-5331
D. Sci. (Med.)
Russian Federation, Obninsk; ObninskIrina A. Zamulaeva
Tsyb Medical Radiological Research Center – branch of the National Medical Research Radiological Centre; Joint Institute for Nuclear Research
Email: liana6969@mail.ru
ORCID iD: 0000-0002-6136-8445
D. Sci. (Biol.), Prof.
Russian Federation, Obninsk; DubnaAnna O. Yakimova
Tsyb Medical Radiological Research Center – branch of the National Medical Research Radiological Centre
Email: liana6969@mail.ru
ORCID iD: 0000-0002-7834-6533
Cand. Sci. (Biol.)
Russian Federation, ObninskLarisa A. Dzikovskaya
Tsyb Medical Radiological Research Center – branch of the National Medical Research Radiological Centre
Email: liana6969@mail.ru
ORCID iD: 0009-0004-8059-0158
Cand. Sci. (Biol.)
Russian Federation, ObninskElena S. Degtiareva
Tsyb Medical Radiological Research Center – branch of the National Medical Research Radiological Centre
Email: liana6969@mail.ru
Res. Officer
Russian Federation, ObninskZhanna V. Khailova
Tsyb Medical Radiological Research Center – branch of the National Medical Research Radiological Centre
Email: liana6969@mail.ru
ORCID iD: 0000-0003-3258-0954
Cand. Sci. (Med.)
Russian Federation, ObninskSergei A. Ivanov
Tsyb Medical Radiological Research Center – branch of the National Medical Research Radiological Centre; Patrice Lumumba Peoples’ Friendship University of Russia
Email: liana6969@mail.ru
ORCID iD: 0000-0001-7689-6032
D. Sci. (Med.), Corr. Memb. RAS
Russian Federation, Obninsk; MoscowAndrey D. Kaprin
Patrice Lumumba Peoples’ Friendship University of Russia; Hertsen Moscow Oncology Research Institute – branch of the National Medical Research Radiological Centre; National Medical Research Radiological Centre
Email: liana6969@mail.ru
ORCID iD: 0000-0001-8784-8415
D. Sci. (Med.), Prof., Acad. RAS, Acad. RAE
Russian Federation, Moscow; Moscow; MoscowReferences
- Крикунова Л.И., Мкртчян Л.С., Замулаева И.А., и др. Роль специализированной и высокотехнологичной медицинской помощи в выявлении и профилактике онкопатологии гинекологической сферы. В кн.: Медицинские радиологические последствия Чернобыля: прогноз и фактические данные спустя 30 лет. Под. ред. В.К. Иванова, А.Д. Каприна. М.: ГЕОС, 2015 [Krikunova LI, Mkrtchian LS, Zamulaeva IA, et al. Rol' spetsializirovannoi i vysokotekhnologichnoi meditsinskoi pomoshchi v vyiavlenii i profilaktike onkopatologii ginekologicheskoi sfery. V kn.: Meditsinskie radiologicheskie posledstviia Chernobylia: prognoz i fakticheskie dannye spustia 30 let. Pod. red. VK Ivanova, AD Kaprina. Moscow: GEOS, 2015 (in Russian)].
- Иванова Т.И., Дзиковская Л.А., Хорохорина В.А., и др. Уровень малондиальдегида в крови женщин, подвергшихся радиационному воздействию в результате чернобыльской аварии. Радиация и риск. 2023;32(4):79-93 [Ivanova TI, Dzikovskaya LA, Khorokhorina VA, et al. Malondialdehyde levels in the blood of women exposed to radiation as a result of the Chernobyl accident. Radiatsiya i risk = Radiation and Risk. 2023;32(4):79-93 (in Russian)]. doi: 10.21870/0131-3878-2023-32-4-79-93
- Mansouri B, Moradi A, Saba F. Blood oxidative stress parameters in hospital workers occupationally exposed to low doses of ionizing radiation: A systematic review and meta-analysis. Heliyon. 2024;10(22):e39989. doi: 10.1016/j.heliyon.2024.e39989
- Mousavikia SN, Bahreyni Toossi MT, Khademi S, et al. Evaluation of micronuclei and antioxidant status in hospital radiation workers occupationally exposed to low-dose ionizing radiation. BMC Health Serv Res. 2023;23(1):540. doi: 10.1186/s12913-023-09516-2
- Gao J, Dong X, Liu T, et al. Antioxidant status and cytogenetic damage in hospital workers occupationally exposed to low dose ionizing radiation. Mutat Res Genet Toxicol Environ Mutagen. 2020:850-851:503152. doi: 10.1016/j.mrgentox.2020.503152
- Siama Z, Zosang-Zuali M, Vanlalruati A, et al. Chronic low dose exposure of hospital workers to ionizing radiation leads to increased micronuclei frequency and reduced antioxidants in their peripheral blood lymphocytes. Int J Radiat Biol. 2019;95(6):697-709. doi: 10.1080/09553002.2019.1571255
- Bolbol SA, Zaitoun MF, El-Magd SAA, Mohammed NA. Healthcare workers exposure to ionizing radiation: Oxidative stress and antioxidant response. Indian J Occup Environ Med. 2021;25(2):72-7. doi: 10.4103/ijoem.IJOEM_198_20
- Tharmalingam S, Sreetharan S, Kulesza AV, et al. Low-dose ionizing radiation exposure, oxidative stress and epigenetic programing of health and disease. Radiat Res. 2017;188(4.2):525-38. doi: 10.1667/RR14587.1
- Lambring CB, Chen L, Nelson C, et al. Oxidative stress and cancer: Harnessing the therapeutic potential of curcumin and analogues against cancer. Eur J Biol. 2023;82(2):317-25. doi: 10.26650/eurjbiol.2023.1348427
- Domenicotti C, Marengo B. Paradox role of oxidative stress in cancer: State of the art. Antioxidants (Basel). 2022;11(5):1027. doi: 10.3390/antiox11051027
- Korkmaz ŞA, Kaymak SU, Neşelioğlu S, Erel Ö. Thiol-disulphide homeostasis in patients with schizophrenia: The potential biomarkers of oxidative stress in acute exacerbation of schizophrenia. Clin Psychopharmacol Neurosci. 2024;22(1):139-50. doi: 10.9758/cpn.23.1084
- Zhao MJ, Yuan S, Zi H, et al. Oxidative stress links aging-associated cardiovascular diseases and prostatic diseases. Oxid Med Cell Longev. 2021;2021:5896136. doi: 10.1155/2021/5896136
- Nitti M, Marengo B, Furfaro AL, et al. Hormesis and oxidative distress: pathophysiology of reactive oxygen species and the open question of antioxidant modulation and supplementation. Antioxidants (Basel). 2022;11(8):1613. doi: 10.3390/antiox11081613
- Desideri E, Ciccarone F, Ciriolo MR, Targeting glutathione metabolism: Partner in crime in anticancer therapy. Nutrients. 2019;11(8):1926. doi: 10.3390/nu11081926
- Halliwell B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life courier new. Plant Physiol. 2006;141(2):312-22. doi: 10.1104/pp.106.077073
- Musaogullari A, Chai YC. Redox regulation by protein s-glutathionylation: From molecular mechanisms to implications in health and disease. Int J Mol Sci. 2020;21(21):8113. doi: 10.3390/ijms21218113
- Lu SC. Glutathione synthesis. Biochim Biophys Acta. 2013;1830(5):3143-53. doi: 10.1016/j.bbagen.2012.09.008
- Vivancos PD, Wolff T, Markovic J, et al. A nuclear glutathione cycle within the cell cycle. Biochem J. 2010;431(2):169-78. doi: 10.1042/BJ20100409
- Corso CR, Acco A. Glutathione system in animal model of solid tumors: From regulation to therapeutic target. Crit Rev Oncol Hematol. 2018;128:43-57. doi: 10.1016/j.critrevonc.2018.05.014
- Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757-72. doi: 10.2147/CIA.S158513
- Buşu C, Li W, Caldito G, Aw TY. Inhibition of glutathione synthesis in brain endothelial cells lengthens S-phase transit time in the cell cycle: Implications for proliferation in recovery from oxidative stress and endothelial cell damage. Redox Biol. 2013;1(1):131-9. doi: 10.1016/j.redox.2013.01.003
- Yamashita R, Komaki Y, Yang G, Ibuki Y. Cell line-dependent difference in glutathione levels affects the cigarette sidestream smoke-induced inhibition of nucleotide excision repair. Mutat Res Genet Toxicol Environ Mutagen. 2020;858-860:503273. doi: 10.1016/j.mrgentox.2020.503273
- Крикунова Л.И., Мкртчян Л.С., Замулаева И.А., и др. Окислительный стресс у женщин с гиперпролиферативными заболеваниями: негормональные возможности коррекции. Акушерство и гинекология. 2024;10:138-46 [Krikunova LI, Mkrtchyan LS, Zamulaeva IA, et al. Oxidative stress in women with hyperproliferative diseases: Non-hormonal treatment options. Obstetrics and Gynegology. 2024;10:138-46 (in Russian)]. doi: 10.18565/aig.2024.242
- Foppoli C, De Marco F, Cini C, Perluigi M. Redox control of viral carcinogenesis: The human papillomavirus paradigm. Biochim Biophys Acta. 2015;1850(8):1622-32. doi: 10.1016/j.bbagen.2014.12.016
- Cruz-Gregorio A, Aranda-Rivera AK. Redox-sensitive signalling pathways regulated by human papillomavirus in HPV-related cancers. Rev Med Virol. 2021;31(6):e2230. doi: 10.1002/rmv.2230
- Reyes-Hernández OD, Figueroa-González G, Quintas-Granados LI, et al. 3,3'-Diindolylmethane and indole-3-carbinol: Potential therapeutic molecules for cancer chemoprevention and treatment via regulating cellular signaling pathways. Cancer Cell Int. 2023;23(1):180. doi: 10.1186/s12935-023-03031-4
- Tretter V, Hochreiter B, Zach ML, et al. Understanding cellular redox homeostasis: A challenge for precision medicine. Int J Mol Sci. 2021;23(1):106. doi: 10.3390/ijms23010106
- Полуэктова М.В., Мкртчян Л.С., Чиркова Т.В., и др. Антиоксидантные эффекты лигнана – 7-гидроксиматаирезинола в качестве комплементарной терапии гинекологических заболеваний. Гинекология. 2018;20(6):25-30 [Poluektova MV, Mkrtchyan LS, Тсhirkova TV, et al. The lignans 7-hydroxymatairesinol application in adjuvant therapy of gynecological diseases. Gynecology. 2018;20(6):25-30 (in Russian)]. doi: 10.26442/20795696.2018.6.000048
- Кузьмина Е.Г., Мкртчян Л.С., Крикунова Л.И., и др. Роль 7-гидроксиматаирезинола в противовоспалительной терапии гинекологических заболеваний. Лечащий врач. 2018;12:2-7 [Kuzmina EG, Mkrtchyan LS, Krikunova LI, et al. Role of 7-hydroximateiresinol in anti-inflammatory therapy of gynecologic diseases. Lechashchii vrach. 2018;12:2-7 (in Russian)].
- American College of Radiology (ACR). ACR-BI-RADS. 5th Edition. ACR Breast Imaging Reporting and Data System, Breast Imaging Atlas; BI-RADS. Reston, VA: American College of Radiology, 2014.
- Tessler FN, Middleton WD, Grant EG, et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. J Am Coll Radiol. 2017;14(5):587-95. doi: 10.1016/j.jacr.2017.01.046
- Munro MG, Critchley HO, Broder MS, Fraser IS; FIGO Working Group on Menstrual Disorders. FIGO classification system (PALM-COEIN) for causes of abnormal uterine bleeding in nongravid women of reproductive age. Int J Gynaecol Obstet. 2011;113(1):3-13. doi: 10.1016/j.ijgo.2010.11.011
- American College of Radiology (ACR). Assessment Categories Algorithm. Available at: https://www.acr.org/-/media/ACR/Files/RADS/O-RADS/US-v2022/O-RADS-US-v2022-Assessment-Categories-Algorithm.pdf. Accessed: 05.04.2025.
- Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102.
- Ajazuddin Saraf S. Applications of novel drug delivery system for herbal formulations. Fitoterapia. 2010;81(7):680-9. DOI:0.1016/j.fitote.2010.05.001
- Ko J, Yoo C, Xing D, et al. Pharmacokinetic Analyses of Liposomal and Non-Liposomal Multivitamin/Mineral Formulations. Nutrients. 2023;15(13):3073. doi: 10.3390/nu15133073
- Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228-47. doi: 10.1016/j.ejca.2008.10.026
- Morisky DE, Green LW, Levine DM. Concurrent and predictive validity of a self-reported measure of medication adherence. Med Care. 1986;24(1):67-74. PMID: 3945130
- Marimoutou M, Le Sage F, Smadja J, et al. Antioxidant polyphenol-rich extracts from the medicinal plants Antirhea borbonica, Doratoxylon apetalum and Gouania mauritiana protect 3T3-L1 preadipocytes against H2O2, TNFα and LPS inflammatory mediators by regulating the expression of superoxide dismutase and NF-κB genes. J Inflamm. 2015;12(10):3-15. doi: 10.1186/s12950-015-0055-6
- Темирбуланов P.A., Селезнёв E.H. Метод повышения интенсивности свободнорадикального окисления липидосодержащих компонентов крови и его диагностическое значение. Лабораторное дело. 1981;4:209-11 [Temirbulanov PA, Seleznev EH. Method for increasing the intensity of free radical oxidation of lipid-containing blood components and its diagnostic value. Laboratornoe Delo. 1981;4:209-11 (in Russian)].
- Osipov AN, Ryabchenko NI, Ivannik BP, et al. A prior administration of heavy metals reduces thymus lymphocyte DNA lesions and lipid peroxidation in gamma-irradiated mice. J Phys IV France. 2003;107:987-92. doi: 10.1051/jp4:20030464
Supplementary files
