Current issues in computational modeling of thrombosis, fibrinolysis, and thrombolysis
- Authors: Panteleev M.A.1,2,3, Bershadsky E.S.1,4, Shibeko A.M.1,3, Nechipurenko D.Y.1,4
-
Affiliations:
- Center for Theoretical Problems of Physicochemical Pharmacology RAS
- Lomonosov Moscow State University, Faculty of Physics
- Federal Research Center of Pediatric Hematology, Oncology and Immunology
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
- Issue: Vol 16, No 4 (2024)
- Pages: 975-995
- Section: ANALYSIS AND MODELING OF COMPLEX LIVING SYSTEMS
- URL: https://journals.rcsi.science/2076-7633/article/view/306596
- DOI: https://doi.org/10.20537/2076-7633-2024-16-4-975-995
- ID: 306596
Cite item
Full Text
Abstract
Hemostasis system is one of the key body’s defense systems, which is presented in all the liquid tissues and especially important in blood. Hemostatic response is triggered as a result of the vessel injury. The interaction between specialized cells and humoral systems leads to the formation of the initial hemostatic clot, which stops bleeding. After that the slow process of clot dissolution occurs. The formation of hemostatic plug is a unique physiological process, because during several minutes the hemostatic system generates complex structures on a scale ranging from microns for microvessel injury or damaged endothelial cell-cell contacts, to centimeters for damaged systemic arteries. Hemostatic response depends on the numerous coordinated processes, which include platelet adhesion and aggregation, granule secretion, platelet shape change, modification of the chemical composition of the lipid bilayer, clot contraction, and formation of the fibrin mesh due to activation of blood coagulation cascade. Computer modeling is a powerful tool, which is used to study this complex system at different levels of organization. This includes study of intracellular signaling in platelets, modelling humoral systems of blood coagulation and fibrinolysis, and development of the multiscale models of thrombus growth. There are two key issues of the computer modeling in biology: absence of the adequate physico-mathematical description of the existing experimental data due to the complexity of the biological processes, and high computational complexity of the models, which doesn’t allow to use them to test physiologically relevant scenarios. Here we discuss some key unresolved problems in the field, as well as the current progress in experimental research of hemostasis and thrombosis. New findings lead to reevaluation of the existing concepts and development of the novel computer models. We focus on the arterial thrombosis, venous thrombosis, thrombosis in microcirculation and the problems of fibrinolysis and thrombolysis. We also briefly discuss basic types of the existing mathematical models, their computational complexity, and principal issues in simulation of thrombus growth in arteries.
About the authors
Mikhail A.. Panteleev
Center for Theoretical Problems of Physicochemical Pharmacology RAS; Lomonosov Moscow State University, Faculty of Physics; Federal Research Center of Pediatric Hematology, Oncology and Immunology
Email: mapanteleev@yandex.ru
Efim S.. Bershadsky
Center for Theoretical Problems of Physicochemical Pharmacology RAS; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
Email: mapanteleev@yandex.ru
Alexei M.. Shibeko
Center for Theoretical Problems of Physicochemical Pharmacology RAS; Federal Research Center of Pediatric Hematology, Oncology and Immunology
Email: mapanteleev@yandex.ru
D. Yu. Nechipurenko
Center for Theoretical Problems of Physicochemical Pharmacology RAS; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
Author for correspondence.
Email: mapanteleev@yandex.ru
References
- Андреева А. А., Николаев А. В., Лобанов А. И. Исследование точечной математической модели полимеризации фибрина // Компьютерные исследования и моделирование, 9:2 (2017), 247–258. [Mathnet, MathSciNet; Andreeva A. A., Nikolaev A. V., Lobanov A. I. Analysis of point model of fibrin polymerization // Computer Research and Modeling, 9:2 (2017), 247–258 (in Russian).
- Болдова А. Е., Василевская В. Д., Свешникова А. Н. Математическая модель рецептора 3 типа к инозитол-3-фосфату (IP3R3) // Системная биология и физиология, 2:1 (2023), 3–10. [Boldova A. E., Vasilevskaya V. D., Sveshnikova A. N. Matematicheskaya model’ receptora 3 tipa k inozitol-3-fosfatu (IP3R3) // Sistemnaya biologiya i fiziologiya, 2:1 (2023), 3–10 (in Russian)].
- Лобанов А. И. Полимеризация фибрина как волна фазового перехода. Математическая модель // Журнал вычислительной математики и математической физики, 56:6 (2016), 1138–1148. [Mathnet, Crossref, ZMath; Lobanov A. I. Fibrin polymerization as a phase transition wave: A mathematical model // Comput. Math. and Math. Phys., 56 (2016), 1118–1127.
- Пантелеев М. А., Степанян М. Г., Свешникова А. Н. Функциональные ответы тромбоцитов и внутриклеточная сигнализация: молекулярные связи. Часть 1: ответы // Системная биология и физиология, 1:3 (2022), 14–23. [Panteleev M. A., Stepanyan M. G., Sveshnikova A. N. Funktsional’nye otvety trombotsitov i vnutrikletochnaya signalizatsiya: molekulyarnye svyazi. Chast’ 1: otvety // Sistemnaya biologiya i fiziologiya, 1:3 (2022), 14–23 (in Russian)].
- Пантелеев М. А., Шибеко А. М., Нечипуренко Д. Ю., Береснева Е. А., Подоплелова Н. А., Свешникова А. Н. Гемостаз и тромбоз. Пространственная организация биохимических процессов на микроуровне // Биологические мембраны, 39:3 (2022), 163–171. [Crossref; Panteleev M. A., Shibeko A. M., Nechipurenko D. Yu., Beresneva E. A., Podoplelova N. A., Sveshinkova A. N. Hemostasis and thrombosis. Spatial organization of the biochemical processes at microscale // Biologicheskie membrany, 39:3 (2022), 163–171 (in Russian)].
- Свешникова А. Н., Степанян М. Г., Пантелеев М. А. Функциональные ответы тромбоцитов и внутриклеточная сигнализация: молекулярные связи. Часть 1: ответы // Системная биология и физиология, 1:1 (2022), 14–23. [Sveshnikova A. N., Stepanyan M. G., Panteleev M. A. Funkcional’nye otvety trombocitov i vnutrikletochnaya signalizaciya: molekulyarnye svyazi. Chast’ 1: otvety // Sistemnaya biologiya i fiziologiya, 1:1 (2022), 14–23 (in Russian)].
- Abaeva A. A., Canault M., Kotova Y. N., Obydennyy S. I., Yakimenko A. O., Podoplelova N. A., Panteleev M. A., et al. Procoagulant platelets form an α-granule protein-covered “cap” on their surface that promotes their attachment to aggregates // Journal of Biological Chemistry, 288:41 (2013), 29621–29632.
- Ahmed M. U., Kaneva V., Loyau S., Nechipurenko D., Receveur N., Mangin M., Le Bris P. H., et al. Pharmacological blockade of glycoprotein VI promotes thrombus disaggregation in the absence of thrombin // Arteriosclerosis, Thrombosis, and Vascular Biology, 40:9 (2020), 2127–2142.
- Al-Saad M., Suarez C. A., Obeidat A., Bordas S. P. A., Kulasegaram S. Application of smooth particle hydrodynamics method for modelling blood flow with thrombus formation // Computer Modeling in Engineering & Sciences, 122:3 (2020), 831–862.
- Anand S., Diamond S. L. Computer simulation of systemic circulation and clot lysis dynamics during thrombolytic therapy that accounts for inner clot transport and reaction // Circulation, 94:4 (1996), 763–774.
- Anand M., Panteleev M. A., Ataullakhanov F. I. Computational models of hemostasis: Degrees of complexity // Applications in Engineering Science, 10 (2022), 100103.
- Babushkina E. S., Bessonov N. M., Ataullakhanov F. I., Panteleev M. A. Continuous modeling of arterial platelet thrombus formation using a spatial adsorption equation // PLoS One, 10:10 (2015), e0141068.
- Bannish B. E., Chernysh I. N., Keener J. P., Fogelson A. L., Weisel J. W. Molecular and physical mechanisms of fibrinolysis and thrombolysis from mathematical modeling and experiments // Scientific Reports, 7:1 (2017), 6914.
- Bannish B. E., Keener J. P., Fogelson A. L. Modelling fibrinolysis: a 3D stochastic multiscale model // Mathematical Medicine and Biology: A Journal of the IMA, 31:1 (2014), 17–44.
- Belyaev A. V., Dunster J. L., Gibbins J. M., Panteleev M. A., Volpert V. Modeling thrombosis in silico: Frontiers, challenges, unresolved problems and milestones // Physics of Life Reviews, 26 (2018), 57–95.
- Berger M. J., Oliger J. Adaptive mesh refinement for hyperbolic partial differential equations // Journal of Computational Physics, 53:3 (1984), 484–512. [Crossref, MathSciNet, ZMath, ADS NASA].
- Bershadsky E. S., Ermokhin D. A., Kurattsev V. A., Panteleev M. A., Nechipurenko D. Yu. Force balance ratio is a robust predictor of arterial thrombus stability // Biophysical Journal, 123:4 (2024), 464–477.
- Brill A., Fuchs T. A., Savchenko A. S., Thomas G. M., Martinod K., De Meyer S. F., Wagner D., et al. Neutrophil extracellular traps promote deep vein thrombosis in mice // Journal of Thrombosis and Haemostasis, 10:1 (2012), 136–144.
- von Brühl M. L., Stark K., Steinhart A., Chandraratne S., Konrad I., Lorenz M., Massberg S., et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo // Journal of Experimental Medicine, 209:4 (2012), 819–835.
- Du J., Kim D., Alhawael G., Ku D. N., Fogelson A. L. Clot permeability, agonist transport, and platelet binding kinetics in arterial thrombosis // Biophysical Journal, 119:10 (2020), 2102–2115.
- Garzon Dasgupta A. K., Martyanov A. A., Filkova A. A., Panteleev M. A., Sveshnikova A. N. Development of a simple kinetic mathematical model of aggregation of particles or clustering of receptors // Life, 10:6 (2020), 97.
- Gutierrez N. G., Mukherjee D., Bark D. Jr. Decoding thrombosis through code: a review of computational models // Journal of Thrombosis and Haemostasis, 2023.
- Kaiser R., Escaig R., Nicolai L. Hemostasis without clot formation — how platelets guard the vasculature in inflammation, infection, and malignancy // Blood, 142:17 (2023), 1413–1425.
- Kamocka M. M., Mu J., Liu X., Chen N., Zollman A., Rosen B., Sturonas-Brown E. D., et al. Two-photon intravital imaging of thrombus development // Journal of Biomedical Optics, 15:1 (2010), 016020.
- Kaneva V. N., Dunster J. L., Volpert V., Ataullahanov F., Panteleev M. A., Nechipurenko D. Yu. Modeling thrombus shell: linking adhesion receptor properties and macroscopic dynamics // Biophysical Journal, 120:2 (2021), 334–351.
- Kovalenko T. A., Giraud M. N., Eckly A., Ribba A. S., Proamer F., Sadoul S., Fraboulet K., et al. Asymmetrical forces dictate the distribution and morphology of platelets in blood clots // Cells, 10:3 (2021), 584.
- LaCroix D. A reduced equation mathematical model for blood coagulation and fibrinolysis in quiescent plasma // The International Journal of Structural Changes in Solids, 4 (2012), 23–35.
- Lahr M. M., van der Zee D. J., Luijckx G. J., Vroomen P. C., Buskens E. A simulation-based approach for improving utilization of thrombolysis in acute brain infarction // Medical Care, 51:12 (2013), 1101–1105.
- LeCover R., Orfeo T., Brummel-Ziedins K., Bravo M., Pusateri A., Varner J. Kinetic modeling of coagulation and fibrinolysis // IFAC-PapersOnLine, 52:26 (2019), 94–100.
- Lehmann M., Schoeman R. M., Krohl P. J., Wallbank A. M., Samaniuk J. R., Jandrot-Perrus M., Neeves K. B. Platelets drive thrombus propagation in a hematocrit and glycoprotein VI–dependent manner in an in vitro venous thrombosis model // Arteriosclerosis, Thrombosis, and Vascular Biology, 38:5 (2018), 1052–1062.
- Levine S. N. Enzyme amplifier kinetics // Science, 152:3722 (1966), 651–653.
- Liniger W., Ruegsegger P. Fibrinolysis: mathematical and experimental studies // Thrombosis and Haemostasis, 17:03/04 (1967), 412–417.
- Lobanov A. I., Starozhilova T. K. The effect of convective flows on blood coagulation processes // Pathophysiology of Haemostasis and Thrombosis, 34:2–3 (2006), 121–134.
- Mangin P. H., Gardiner E. E., Nesbitt W. S., Kerrigan S. W., Korin N., Lam W. A., Panteleev M. A. In vitro flow-based systems to study platelet function and thrombus formation: recommendations for standardization. Communication from the SSC on Biorheology of the ISTH // Journal of Thrombosis and Haemostasis, 18:3 (2020), 748–752.
- Marar T. T., Matzko C. N., Wu J., Esmon C. T., Sinno T., Brass L. F., Tomaiuolo M., et al. Thrombin spatial distribution determines protein C activation during hemostasis and thrombosis // Blood: The Journal of the American Society of Hematology, 139:12 (2022), 1892–1902.
- Martyanov A. A., Balabin F. A., Dunster J. L., Panteleev M. A., Gibbins J. M., Sveshnikova A. N. Control of platelet CLEC-2-mediated activation by receptor clustering and tyrosine kinase signaling // Biophysical Journal, 118:11 (2020), 2641–2655.
- Martyanov A. A., Morozova D. S., Sorokina M. A., Filkova A. A., Fedorova D. V., Uzueva S. S., Sveshnikova A. N., et al. Heterogeneity of integrin αIIbβ3 function in pediatric immune thrombocytopenia revealed by continuous flow cytometry analysis // International Journal of Molecular Sciences, 21:9 (2020), 3035.
- Masalceva A. A., Kaneva V. N., Panteleev M. A., Ataullakhanov F., Volpert V., Afanasyev I., Nechipurenko D. Yu. Analysis of microvascular thrombus mechanobiology with a novel particle-based model // Journal of Biomechanics, 130 (2022), 110801.
- Mitrophanov A. Y., Szlam F., Sniecinski R. M., Levy J. H., Reifman J. Controlled multifactorial coagulopathy: effects of dilution, hypothermia, and acidosis on thrombin generation in vitro // Anesthesia & Analgesia, 130:4 (2020), 1063–1076.
- Moiseyev G., Givli S., Bar-Yoseph P. Z. Fibrin polymerization in blood coagulation — a statistical model // Journal of Biomechanics, 46:1 (2013), 26–30.
- Mountrakis L., Lorenz E., Hoekstra A. G. Where do the platelets go? A simulation study of fully resolved blood flow through aneurysmal vessels // Interface Focus, 3:2 (2013), 20120089.
- Nechipurenko D. Yu., Receveur N., Yakimenko A. O., Shepelyuk T. O., Yakusheva A. A., Kerimov R. R., Panteleev M. A., et al. Clot contraction drives the translocation of procoagulant platelets to thrombus surface // Arteriosclerosis, Thrombosis, and Vascular Biology, 39:1 (2019), 37–47.
- Nechipurenko D. Yu., Shibeko A. M., Sveshnikova A. N., Panteleev M. A. In silico hemostasis modeling and prediction // Hämostaseologie, 40:04 (2020), 524–535.
- Nelson A. C., Kelley M. A., Haynes L. M., Leiderman K. Mathematical models of fibrin polymerization: past, present, and future // Current Opinion in Biomedical Engineering, 20 (2021), 100350.
- Obydennyy S. I., Sveshnikova A. N., Ataullakhanov F. I., Panteleev M. A. Dynamics of calcium spiking, mitochondrial collapse and phosphatidylserine exposure in platelet subpopulations during activation // Journal of Thrombosis and Haemostasis, 14:9 (2016), 1867–1881.
- Pancaldi F., Kim O. V., Weisel J. W., Alber M., Xu Z. Computational biomechanical modeling of fibrin networks and platelet-fiber network interactions // Current Opinion in Biomedical Engineering, 22 (2022), 100369.
- Panteleev M. A., Ananyeva N. M., Ataullakhanov F. I., Saenko E. L. Mathematical models of blood coagulation and platelet adhesion: clinical applications // Current Pharmaceutical Design, 13:14 (2007), 1457–1467.
- Panteleev M. A., Ananyeva N. M., Greco N. J., Ataullakhanov F. I., Saenko E. L. Two subpopulations of thrombin-activated platelets differ in their binding of the components of the intrinsic factor X-activating complex // Journal of Thrombosis and Haemostasis, 3:11 (2005), 2545–2553.
- Panteleev M. A., Andreeva A. A., Lobanov A. I. Differential drug target selection in blood coagulation: What can we get from computational systems biology models? // Current Pharmaceutical Design, 26:18 (2020), 2109–2115.
- Panteleev M. A., Balandina A. N., Lipets E. N., Ovanesov M. V., Ataullakhanov F. I. Task-oriented modular decomposition of biological networks: trigger mechanism in blood coagulation // Biophysical Journal, 98:9 (2010), 1751–1761.
- Panteleev M. A., Dashkevich N. M., Ataullakhanov F. I. Hemostasis and thrombosis beyond biochemistry: roles of geometry, flow and diffusion // Thrombosis Research, 136:4 (2015), 699–711.
- Panteleev M. A., Korin N., Reesink K. D., Bark D. L., Cosemans J. M., Gardiner E. E., Mangin P. H. Wall shear rates in human and mouse arteries: standardization of hemodynamics for in vitro blood flow assays. Communication from the ISTH SSC subcommittee on biorheology // Journal of Thrombosis and Haemostasis, 19:2 (2021), 588–595.
- Panteleev M. A., Ovanesov M. V., Kireev D. A., Shibeko A. M., Sinauridze E. I., Ananyeva N. M., Ataullakhanov F. I., et al. Spatial propagation and localization of blood coagulation are regulated by intrinsic and protein C pathways, respectively // Biophysical Journal, 90:5 (2006), 1489–1500.
- Parunov L. A., Fadeeva O. A., Balandina A. N., Soshitova N. P., Kopylov K. G., Kumskova M. A., Panteleev M. A., et al. Improvement of spatial fibrin formation by the anti-TFPI aptamer BAX499: changing clot size by targeting extrinsic pathway initiation // Journal of Thrombosis and Haemostasis, 9:9 (2011), 1825–1834.
- Petkantchin R., Rousseau A., Eker O., Zouaoui Boudjeltia K., Raynaud F., Chopard B. A simplified mesoscale 3D model for characterizing fibrinolysis under flow conditions // Scientific Reports, 13:1 (2023), 13681.
- Piebalgs A., Gu B., Roi D., Lobotesis K., Thom S., Xu X. Y. Computational simulations of thrombolytic therapy in acute ischaemic stroke // Scientific Reports, 8:1 (2018), 15810.
- Podoplelova N. A., Nechipurenko D. Yu., Ignatova A. A., Sveshnikova A. N., Panteleev M. A. Procoagulant platelets: mechanisms of generation and action // Hämostaseologie, 41:02 (2021), 146–153.
- Podoplelova N. A., Sveshnikova A. N., Kotova Y. N., Eckly A., Receveur N., Nechipurenko D. Yu., Panteleev M. A., et al. Coagulation factors bound to procoagulant platelets concentrate in cap structures to promote clotting // Blood: The Journal of the American Society of Hematology, 128:13 (2016), 1745–1755.
- Podoplelova N. A., Sveshnikova A. N., Kurasawa J. H., Sarafanov A. G., Chambost H., Vasil’ev S. A., Panteleev M., et al. Hysteresis-like binding of coagulation factors X/Xa to procoagulant activated platelets and phospholipids results from multistep association and membrane-dependent multimerization // Biochimica et Biophysica Acta (BBA) – Biomembranes, 1858:6 (2016), 1216–1227.
- Qureshi A., Darwish O., Dillon-Murphy D., Chubb H., Williams S., Nechipurenko D., De Vecchi A. Modelling left atrial flow and blood coagulation for risk of thrombus formation in atrial fibrillation // Computing in Cardiology, IEEE, 2020, 1–4.
- Qureshi A., Lip G. Y., Nordsletten D. A., Williams S. E., Aslanidi O., De Vecchi A. Imaging and biophysical modelling of thrombogenic mechanisms in atrial fibrillation and stroke // Frontiers in Cardiovascular Medicine, 9 (2023), 1074562.
- Ratto N., Tokarev A., Chelle P., Tardy-Poncet B., Volpert V. Clustering of thrombin generation test data using a reduced mathematical model of blood coagulation // Acta Biotheoretica, 68 (2020), 21–43.
- Receveur N., Nechipurenko D., Knapp Y., Yakusheva A., Maurer E., Denis C. V., Mangin P. H., et al. Shear rate gradients promote a bi-phasic thrombus formation on weak adhesive proteins, such as fibrinogen in a von Willebrand factor-dependent manner // Haematologica, 105:10 (2020), 2471.
- Shakhidzhanov S. S., Shaturny V. I., Panteleev M. A., Sveshnikova A. N. Modulation and preamplification of PAR1 signaling by ADP acting via the P2Y12 receptor during platelet subpopulation formation // Biochimica et Biophysica Acta (BBA) – General Subjects, 1850:12 (2015), 2518–2529.
- Shankar K. N., Zhang Y., Sinno T., Diamond S. L. A three-dimensional multiscale model for the prediction of thrombus growth under flow with single-platelet resolution // PLoS Computational Biology, 18:1 (2022), e1009850.
- Shepelyuk T. O., Panteleev M. A., Sveshnikova A. N. Computational modeling of quiescent platelet energy metabolism in the context of whole-body glucose turnover // Mathematical Modelling of Natural Phenomena, 11:6 (2016).
- Shibeko A. M., Chopard B., Hoekstra A. G., Panteleev M. A. Redistribution of TPA fluxes in the presence of PAI-1 regulates spatial thrombolysis // Biophysical Journal, 119:3 (2020), 638–651.
- Shibeko A. M., Lobanova E. S., Panteleev M. A., Ataullakhanov F. I. Blood flow controls coagulation onset via the positive feedback of factor VII activation by factor Xa // BMC Systems Biology, 4:1 (2010), 1–12.
- Shibeko A. M., Panteleev M. A. Untangling the complexity of blood coagulation network: use of computational modelling in pharmacology and diagnostics // Briefings in Bioinformatics, 17:3 (2016), 429–439.
- Staessens S., Denorme F., Francois O., Desender L., Dewaele T., Vanacker P., De Meyer S. F., et al. Structural analysis of ischemic stroke thrombi: histological indications for therapy resistance // Haematologica, 105:2 (2020), 498.
- Staessens S., François O., Desender L., Vanacker P., Dewaele T., Sciot R., De Meyer S. F., et al. Detailed histological analysis of a thrombectomy-resistant ischemic stroke thrombus: a case report // Thrombosis Journal, 19 (2021), 1–7.
- Stalker T. J., Traxler E. A., Wu J., Wannemacher K. M., Cermignano S. L., Voronov R., Brass L. F., et al. Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network // Blood: The Journal of the American Society of Hematology, 121:10 (2013), 1875–1885.
- Susree M., Panteleev M. A., Anand M. Coated platelets introduce significant delay in onset of peak thrombin production: theoretical predictions // Journal of Theoretical Biology, 453 (2018), 108–116.
- Sveshnikova A. N., Ataullakhanov F. I., Panteleev M. A. Compartmentalized calcium signaling triggers subpopulation formation upon platelet activation through PAR1 // Molecular BioSystems, 11:4 (2015), 1052–1060.
- Sveshnikova A. N., Balatskiy A. V., Demianova A. S., Shepelyuk T. O., Shakhidzhanov S. S., Balatskaya M. N., Panteleev M. A., et al. Systems biology insights into the meaning of the platelet’s dual-receptor thrombin signaling // Journal of Thrombosis and Haemostasis, 14:10 (2016), 2045–2057.
- Tomaiuolo M., Stalker T. J., Welsh J. D., Diamond S. L., Sinno T., Brass L. F. A systems approach to hemostasis: 2. Computational analysis of molecular transport in the thrombus microenvironment // Blood: The Journal of the American Society of Hematology, 124:11 (2014), 1816–1823.
- Topalov N. N., Yakimenko A. O., Canault M., Artemenko E. O., Zakharova N. V., Abaeva A. A., Panteleev M. A., et al. Two types of procoagulant platelets are formed upon physiological activation and are controlled by integrin αIIbβ3 // Arteriosclerosis, Thrombosis, and Vascular Biology, 32:10 (2012), 2475–2483.
- Tosenberger A., Ataullakhanov F., Bessonov N., Panteleev M., Tokarev A., Volpert V. Modelling of platelet–fibrin clot formation in flow with a DPD–PDE method // Journal of Mathematical Biology, 72 (2016), 649–681.
- Tosenberger A., Ataullakhanov F., Bessonov N., Panteleev M., Tokarev A., Volpert V. Modelling of thrombus growth in flow with a DPD–PDE method // Journal of Theoretical Biology, 337 (2013), 30–41. [Crossref, MathSciNet, ZMath, ADS NASA].
- Trifanov P. V., Kaneva V. N., Strijhak S. V., Panteleev M. A., Ataullakhanov F. I., Dunster J., Nechipurenko D. Yu., et al. Developing quasi-steady model for studying hemostatic response using supercomputer technologies // Supercomputing Frontiers and Innovations, 5:4 (2018), 67–72.
- Weisel J. W., Nagaswami C. Computer modeling of fibrin polymerization kinetics correlated with electron microscope and turbidity observations: clot structure and assembly are kinetically controlled // Biophysical Journal, 63:1 (1992), 111–128.
- Welsh J. D., Poventud-Fuentes I., Sampietro S., Diamond S. L., Stalker T. J., Brass L. F. Hierarchical organization of the hemostatic response to penetrating injuries in the mouse macrovasculature // Journal of Thrombosis and Haemostasis, 15:3 (2017), 526–537.
- Xu Z., Christley S., Lioi J., Kim O., Harvey C., Sun W., Alber M., et al. Multiscale model of fibrin accumulation on the blood clot surface and platelet dynamics // Methods in Cell Biology, 110 (2012), 367–388. Academic Press.
- Yakusheva A. A., Butov K. R., Bykov G. A., Závodszky G., Eckly A., Ataullakhanov F. I., Mangin P. H., et al. Traumatic vessel injuries initiating hemostasis generate high shear conditions // Blood Advances, 6:16 (2022), 4834–4846.
- Yesudasan S., Wang X., Averett R. D. Coarse-grained molecular dynamics simulations of fibrin polymerization: effects of thrombin concentration on fibrin clot structure // Journal of Molecular Modeling, 24 (2018), 1–14.
- Yesudasan S., Wang X., Averett R. D. Fibrin polymerization simulation using a reactive dissipative particle dynamics method // Biomechanics and Modeling in Mechanobiology, 17 (2018), 1389–1403.
- Zhalyalov A. S., Panteleev M. A., Gracheva M. A., Ataullakhanov F. I., Shibeko A. M. Co-ordinated spatial propagation of blood plasma clotting and fibrinolytic fronts // PLoS One, 12:7 (2017), e0180668.
- Zhang Z., Zhu J., Wu M., Neidlin M., Wu W. T., Wu P. Computational modeling of hemodynamics and risk of thrombosis in the left atrial appendage using patient-specific blood viscosity and boundary conditions at the mitral valve // Biomechanics and Modeling in Mechanobiology, 22:4 (2023), 1447–1457.
Supplementary files
