Localized nonlinear waves of the sine-Gordon equation in a model with three extended impurities
- Authors: Samsonov K.Y.1, Kabanov D.K.2, Nazarov V.N.3, Ekomasov E.G.2
-
Affiliations:
- Tyumen State University
- Ufa University of Science and Technology
- Institute of Molecule and Crystal Physics, Ufa Federal Research Centre, Russian Academy of Sciences
- Issue: Vol 16, No 4 (2024)
- Pages: 855-868
- Section: MODELS IN PHYSICS AND TECHNOLOGY
- URL: https://journals.rcsi.science/2076-7633/article/view/306591
- DOI: https://doi.org/10.20537/2076-7633-2024-16-4-855-868
- ID: 306591
Cite item
Full Text
Abstract
In this work, we use analytical and numerical methods to consider the problem of the structure and dynamics of coupled localized nonlinear waves in the sine-Gordon model with three identical attractive extended “impurities”, which are modeled by spatial inhomogeneity of the periodic potential. Two possible types of coupled nonlinear localized waves are found: breather and soliton. The influence of system parameters and initial conditions on the structure, amplitude, and frequency of localized waves was analyzed. Associated oscillations of localized waves of the breather type as in the case of point impurities, are the sum of three harmonic oscillations: in-phase, in-phase-antiphase and antiphase type. Frequency analysis of impurity-localized waves that were obtained during a numerical experiment was performed using discrete Fourier transform. To analyze localized breather-type waves, the numerical finite difference method was used. To carry out a qualitative analysis of the obtained numerical results, the problem was solved analytically for the case of small amplitudes of oscillations localized on impurities. It is shown that, for certain impurity parameters (depth and width), it is possible to obtain localized solitontype waves. The ranges of values of the system parameters in which localized waves of a certain type exist, as well as the region of transition from breather to soliton types of oscillations, have been found. The values of the depth and width of the impurity at which a transition from the breather to the soliton type of localized oscillations is observed were determined. Various scenarios of soliton-type oscillations with negative and positive amplitude values for all three impurities, as well as mixed cases, were obtained and considered. It is shown that in the case when the distance between impurities much less than one, there is no transition region where which the nascent breather, after losing energy through radiation, transforms into a soliton. It is shown that the considered model can be used, for example, to describe the dynamics of magnetization waves in multilayer magnets.
Keywords
About the authors
Kirill Yurevich Samsonov
Tyumen State University
Email: k.y.samsonov@gmail.com
without scientific degree, no status
Daniil Konstantinovich Kabanov
Ufa University of Science and Technology
Email: danya.kabanov.95@mail.ru
Vladimir N. Nazarov
Institute of Molecule and Crystal Physics, Ufa Federal Research Centre, Russian Academy of Sciences
Email: k.y.samsonov@gmail.com
Candidate of physico-mathematical sciences, Associate professor
Evgenii Grigorievich Ekomasov
Ufa University of Science and Technology
Author for correspondence.
Email: k.y.samsonov@gmail.com
Doctor of physico-mathematical sciences, Professor
References
- О. М. Браун, Ю. С. Кившарь, Модель Френкеля–Конторовой: концепции, методы, приложения, Физматлит, М., 2008, 519 с.; O. M. Braun, Yu. S. Kivshar, The Frenkel–Kontorova model: concepts, methods, and applications, Springer, Berlin, 2004.
- В. Г. Быков, Нелинейные волновые процессы в геологических средах, Дальнаука, Владивосток, 2000, 190 с. [V. G. Bykov, Nonlinear wave processes in geological media, Dal’nauka, Vladivostok, 2000, 190 pp. (in Russian)].
- В. А. Делев, В. Н. Назаров, О. А. Скалдин, Э. С. Батыршин, Е. Г. Екомасов, “Сложная динамика каскада кинк-антикинковых взаимодействий в линейном дефекте электроконвективной структуры нематика”, Письма в ЖЭТФ, 110:9 (2019), 607–613; V. A. Delev, V. N. Nazarov, O. A. Scaldin, E. S. Batyrshin, E. G. Ekomasov, “Complex dynamics of the cascade of kink–antikink interactions in a linear defect of the electroconvective structure of a nematic liquid crystal”, JETP Lett., 110 (2019), 607–612.
- Е. Г. Екомасов, А. М. Гумеров, “Коллективное влияние примесей на динамику кинков уравнения синус-Гордона”, Компьютерные исследования и моделирование, 5:3 (2013), 403–412 [E. G. Ekomasov, A. M. Gumerov, “Collective influence of impurities on the dynamics of kinks of the sine-Gordon equation”, Computer Research and Modeling, 5:3 (2013), 403–412 (in Russian)].
- Е. Г. Екомасов, Р. В. Кудрявцев, К. Ю. Самсонов, В. Н. Назаров, Д. К. Кабанов, “Динамика кинка уравнения синус-Гордона в модели с тремя одинаковыми притягивающими или отталкивающими примесями”, Известия высших учебных заведений. Прикладная нелинейная динамика, 31:6 (2023), 693–709 [E. G. Ekomasov, R. V. Kudryavtsev, K. Yu. Samsonov, V. N. Nazarov, D. K. Kabanov, “Dynamics of the kink of the sine-Gordon equation in a model with three identical attractive or repulsive impurities”, Izvestiya vysshikh uchebnykh zavedeniy. Prikladnaya nelineynaya dinamika, 31:6 (2023), 693–709 (in Russian)].
- Е. Г. Екомасов, К. Ю. Самсонов, А. М. Гумеров, Р. В. Кудрявцев, “Структура и динамика локализованных нелинейных волн уравнения синус-Гордона в модели с одинаковыми притягивающими примесями”, Известия вузов. Прикладная нелинейная динамика, 30:6 (2022), 749–765 [E. G. Ekomasov, A. M. Gumerov, “Structure and dynamics of localized nonlinear waves of the sine-Gordon equation in a model with identical attractive impurities”, Izvestiya vysshikh uchebnykh zavedeniy. Prikladnaya nelineynaya dinamika, 30:6 (2022), 749–765 (in Russian)].
- М. А. Шамсутдинов, И. Ю. Ломакина, В. Н. Назаров, А. Т. Харисов, Д. М. Шамсутдинов, Ферро и антиферромагнитодинамика. Нелинейные колебания, волны и солитоны, Наука, М., 2009, 456 с. [M. A. Shamsutdinov, I. Yu. Lomakina, V. N. Nazarov, A. T. Kharisov, D. M. Shamsutdinov, Ferro- and antiferromagnetodynamics. Nonlinear oscillations, waves and solitons, Nauka, Moscow, 2009 (in Russian)].
- H. E. Baron, W. J. Zakrzewski, “Collective coordinate approximation to the scattering of solitons in modified NLS and sine-Gordon models”, Journal of High Energy Physics, 2016:6 (2016), 185.
- D. Chevizovich, D. Michieletto, A. Mvogo, F. Zakiryanov, S. Zdravkovic, “A review on nonlinear DNA physics”, R. Soc. Open Sci., 7:11 (2020), 200774.
- J. Cuevas-Maraver, P. G. Kevrekidis, F. Williams (eds.), The sine-Gordon model and its applications: from pendula and Josephson junctions to gravity and high-energy physics, Springer, 2014, 263 pp.
- T. Dauxois, M. Peyrard, Physics of solitons, Cambridge University Press, New York, 2010, 436 pp.
- R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, H. C. Morris, Solitons and nonlinear wave equations, Academic Press, London, 1982, 630 pp.
- P. Dorey, A. Gorina, I. Perapechka, T. Romanczukiewicz, Y. Shnir, “Resonance structures in kink–antikink collisions in a deformed sine-Gordon model”, Journal of High Energy Physics, 2021:9 (2021), 145.
- E. G. Ekomasov, A. M. Gumerov, R. V. Kudryavtsev, “Resonance dynamics of kinks in the sine-Gordon model with impurity, external force and damping”, Journal of Computational and Applied Mathematics, 312 (2017), 198–208.
- E. G. Ekomasov, A. M. Gumerov, R. V. Kudryavtsev, S. V. Dmitriev, V. N. Nazarov, “Multisoliton dynamics in the sine-Gordon model with two point impurities”, Brazilian Journal of Physics, 48:6 (2018), 576–584.
- E. G. Ekomasov, A. M. Gumerov, R. R. Murtazin, “Interaction of sine-Gordon solitons in the model with attracting impurities”, Mathematical Methods in the Applied Sciences, 40:17 (2016), 6178–6186.
- E. G. Ekomasov, R. R. Murtazin, V. N. Nazarov, “Excitation of magnetic inhomogeneities in three layer ferromagnetic structure with different parameters of the magnetic anisotropy and exchange”, J. Magn. Magn. Mater., 385 (2015), 217–221.
- A. L. Fabian, R. Kohl, A. Biswas, “Perturbation of topological solitons due to sine-Gordon equation and its type”, Communications in Nonlinear Science and Numerical Simulation, 14:4 (2009), 1227–1244.
- L. A. Ferreira, B. Piette, W. J. Zakrzewski, “Wobbles and other kink–breather solutions of the sine-Gordon model”, Phys. Rev. E, 77:3 (2008), 036613.
- J. A. Gonzalez, A. Bellorin, M. A. Garcia-Nustes, L. E. Guerrero, S. Jimenez, L. Vazquez, “Arbitrarily large numbers of kink internal modes in inhomogeneous sine-Gordon equations”, Phys. Lett. A, 381:24 (2017), 1995–1998.
- A. M. Gumerov, E. G. Ekomasov, R. V. Kudryavtsev, M. I. Fakhretdinov, “Excitation of large amplitude localized nonlinear waves by the interaction of kinks of the sine-Gordon equation with attracting impurity”, Russian Journal of Nonlinear Dynamics, 15:1 (2019), 21–34.
- G. Kalbermann, “The sine-Gordon wobble”, J. Phys. A: Math. Gen., 37:48 (2004), 11603–11612.
- Yu. S. Kivshar, D. E. Pelinovsky, T. Cretegny, M. Peyrard, “Internal modes of solitary waves”, Phys. Rev. Lett., 80:23 (1998), 5032–5035.
- M. A. Lizunova, J. Kager, S. Lange, J. Wezel, “Kinks and realistic impurity models in φ⁴-theory”, International Journal of Modern Physics B, 36:5 (2022), 2250042.
- D. Saadatmand, S. V. Dmitriev, D. I. Borisov, P. G. Kevrekidis, “Interaction of sine-Gordon kinks and breathers with a parity-time-symmetric defect”, Phys. Rev. E, 90:5 (2014), 052902.
Supplementary files
