Uncertainty Assessment for Mean Snow Cover Depth Derived from Direct Measurements on Aldegondabreen Glacier (Svalbard)

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Received March 27, 2022; revised May 5, 2023; accepted June 27, 2023

This study introduces an empirical equation allowing to estimate an uncertainty of area-averaged snow depth on the Aldegondabreen Glacier, computed from standard snow surveys and made by an avalanche probe or by similar equipment. The two-decade history of the ongoing mass-balance monitoring program on this glacier shows that the methodology of field work on snow-measuring survey varies somewhat from year to year: the number and location of measurement points change. To identify and quantify long-term trends and variations in snow cover, it is crucial to assess the inter-comparability of the data in the obtained measurement series. The proposed equation was intended to solve this task basing on the collected data only, allowing to estimate the uncertainty even retrospectively. To build this equation, we applied a bootstrap statistical approach to the results of snow surveys carried out in Svalbard in 2015–2021. After interpolating the field measurements, obtained rasters were sampled sequentially with different numbers of points, simulating the real snow survey. The points were initially located in a form of a quasiregular grid and then randomly shifted between the iterations. After a thousand simulations for each number of points, the standard deviations were calculated relative to the “true” values, derived from corresponding rasters. These standard deviations, which we admit to be a random error of the area-averaged snow depth value, expectedly decrease with the number of sampling points and increase with the coefficient of variation (\({{{\text{C}}}_{\user1{v}}}\)). The well-known \({{{\text{C}}}_{\user1{v}}}\) index indirectly characterizes the irregularity of snow cover. After approximating the bootstrap results, the authors derived an equation that yields a relative error. The equation includes only two predictors which are the probing density per area unit and the \({{{\text{C}}}_{\user1{v}}}\), which potentially allows using it for the other glaciers. However, the universality of the empirically obtained coefficients is debatable, since they may vary due toa glacier size, its morphology and other parameters.

作者简介

А. Terekhov

Arctic and Antarctic Research Institute

编辑信件的主要联系方式.
Email: antonvterekhov@gmail.com
Russia, St. Petersburg

I. Vasilevich

Arctic and Antarctic Research Institute

Email: antonvterekhov@gmail.com
Russia, St. Petersburg

U.V. Prokhorova

Arctic and Antarctic Research Institute

Email: antonvterekhov@gmail.com
Russia, St. Petersburg

参考

  1. Borisik A.L., Novikov A.L., Glazovsky A.F., Lavrentiev I.I., Verkulich S.R. Structure and dynamics of Aldegondabreen, Spitsbergen, according to repeated GPR surveys in 1999, 2018 and 2019. Led i Sneg. Ice and Snow. 2021, 61 (1): 26–37 [In Russian].
  2. Vasilevich I.I., Chernov A.A. Estimation of Snow Reserves in Watercourses in the Arctic Region. Problemi Arktiki i Antarktiki. Arctic and Antarctic Research. 2018, 64 (1): 5–15 [In Russian].
  3. Lavrentiev I.I., Kutuzov S.S., Glazovsky A.F., Macheret Y.Y., Osokin N.I., Sosnovsky A.V., Chernov R.А., Cherniakov G.A. Snow thickness on Austre Grønfjordbreen, Svalbard, from radar measurements and standard snow surveys. Led i Sneg. Ice and Snow. 2018, 58 (1): 5–20 [In Russian]. https://doi.org/10.15356/2076-6734-2018-1-5-20
  4. Nastavlenie gidrometeorologicheskim stantsiyam i postam. Guidelines for hydromoteorological stations and gauges. V. 3. Pt. 1. Weather observations at the stations. Leningrad: Hydrometeoizdat, 1985: 301 p. [In Russian].
  5. RD 52.25.261-90 Rukovodstvo po snegomernim rabotam v gorakh. Manual for snow surveys in the mountains. Moscow: Roskomgidromet SSSR, 1991: 127 p. [In Russian].
  6. Romashova K.V., Chernov R.A., Vasilevich I.I. Study of the glacial flow of rivers in the Grønfjord bay basin (Western Svalbard). Problemi Arktiki i Antarktiki. Arctic and Antarctic Research. 2019, 65 (1): 34–45 [In Russian].
  7. Shitikov V.K., Rosenberg G.S. Randomizatsiya i butstrep: statisticheskiy analiz v biologii i ekologii s ispol’zovaniem R. Randomization and bootstrap: statistical analysis in biology and ecology using the R. Tolyatti: Kassandra, 2013: 314 p. [In Russian].
  8. Andreassen L.M., Elvehøy H., Kjøllmoen B., Engeset R.V. Reanalysis of long-term series of glaciological and geodetic mass balance for 10 Norwegian glaciers. The Cryosphere. 2016, 10 (2): 535–552. https://doi.org/10.5194/tc-10-535-2016
  9. Belart J.M.C., Berthier E., Magnússon E., Anderson L.S., Pálsson F., Thorsteinsson T., Howat I.M, Aðalgeirsdóttir G., Jóhannesson T., Jarosch A.H. Winter mass balance of Drangajökull ice cap (NW Iceland) derived from satellite sub-meter stereo images. The Cryosphere. 2017, 11 (3): 1501–1517. https://doi.org 10.5194/tc-11-1501-2017
  10. Brucker L., Markus T. Arctic-scale assessment of satellite passive microwave-derived snow depth on sea ice using Operation IceBridge airborne data. Journ. of Geophysical Research: Oceans. 2013, 118 (6): 2892–2905.
  11. Dai L., Che T., Zhang Y., Ren Z., Tan J., Akynbekkyzy M., Xiao L., Zhou S., Yan Y., Liu Y., Li H., Wang L. Microwave radiometry experiment for snow in Altay, China: time series of in situ data for electromagnetic and physical features of snowpack. Earth System Science Data. 2022, 14 (8): 3509–3530. https://doi.org/10.5194/essd-14-3509-2022
  12. Efron B. Bootstrap methods: another look at the jackknife. The Annals of Statistics. 1979, 7 (1): 1–26.
  13. Fountain A.G., Vecchia A. How many stakes are required to measure the mass balance of a glacier? Geografiska Annaler: Series A, Physical Geography. 1999, 81 (4): 563–573. https://doi.org/10.1111/1468-0459.00084
  14. Førland E.J., Hanssen-Bauer I. Increased precipitation in the Norwegian Arctic: true or false? Climatic change. 2000, 46 (4): 485–509. https://doi.org/10.1023/A:1005613304674
  15. Galos S.P., Klug C., Maussion F., Covi F., Nicholson L., Rieg L., Gurgiser W., Mölg T., Kaser G. Reanalysis of a 10-year record (2004–2013) of seasonal mass balances at Langenferner/Vedretta Lunga, Ortler Alps, Italy. The Cryosphere. 2017, 11 (3): 1417–1439. https://doi.org/10.5194/tc-11-1417-2017
  16. Hagen J.O., Liestøl O. Long-term glacier mass-balance investigations in Svalbard, 1950–88. Annals of Glaciology. 1990, 14: 102–106. https://doi.org/10.3189/S0260305500008351
  17. Hanssen-Bauer I., Førland E.J., Hisdal H., Mayer S., Sandø A.B., Sorteberg A. Climate in Svalbard 2100 – a knowledge base for climate adaptation. NCSS report M-1242. Norwegian Environment Agency (Miljødirektoratet). 2019: 208 p.
  18. Isaksen K., Nordli Ø., Ivanov B., Køltzow M.A.Ø., Aaboe S., Gjelten H.M., Mezghani A., Eastwood S., Førland E., Benestad R.E., et al. Exceptional warming over the Barents area. Scientific reports. 2022, 12 (1): 1–18. https://doi.org/10.1038/s41598-022-13568-5
  19. Kelly R. The AMSR-E snow depth algorithm: Description and initial results. Journ, of the Remote Sensing Society of Japan. 2009, 29 (1): 307–317.
  20. Nowak A., Hodgkins R., Nikulina A., Osuch M., Wawrzyniak T., Kavan J., Łepkowska E., Majerska M., Romashova K., Vasilevich I., Sobota I., Rachlewicz G. From land to fjords: The review of Svalbard hydrology from 1970 to 2019. The State of Environmental Science in Svalbard. 2021: 177–201. https://doi.org/10.5281/zenodo.4294063
  21. Pulwicki A., Flowers G., Radić V., Bingham D. Estimating winter balance and its uncertainty from direct measurements of snow depth and density on alpine glaciers. Journ. of Glaciology. 2018, 64 (247): 781–795. https://doi.org/10.1017/jog.2018.68
  22. Terekhov A.V., Verkulich S.R., Borisik A.L., Demidov V.E., Prokhorova U.V., Romashova K.V., Anisimov M.A., Sidorova O.R., Tarasov G. Mass balance, ice volume, and flow velocity of the Vestre Grønfjordbreen (Svalbard) from 2013/14 to 2019/20. Arctic, Antarctic, and Alpine Research. 2022, 54 (1): 584–602. https://doi.org/10.1080/15230430.2022.2150122
  23. Urazgildeeva A.V., Sviashchennikov P.N., Ivanov B.V., Isaksen K., Frland E.J., Brkkan R. Comparative analysis of Russian and Norwegian precipitation gauges, measurements in Barentsburg, Western Spitsbergen. Czech Polar Reports. 2017, 7 (1): 45–51.
  24. Zemp M., Thibert E., Huss M., Stumm D., Rolstad Denby C., Nuth C., Nussbaumer S.U., Moholdt G., Mercer A., Mayer C., Joerg P.C., Jansson P., Hynek B., Fischer A., Escher-Vetter H., Elvehøy H., Andreassen L.M. Reanalysing glacier mass balance measurement series. The Cryosphere. 2013, 7 (4): 1227–1245. https://doi.org/10.5194/tc-7-1227-2013, 2013

补充文件

附件文件
动作
1. JATS XML
2.

下载 (4MB)
3.

下载 (1MB)
4.

下载 (119KB)
5.

下载 (1MB)
6.

下载 (123KB)
7.

下载 (168KB)

版权所有 © А.В. Терехов, И.И. Василевич, У.В. Прохорова, 2023

##common.cookie##