Толщина льда и снежного покрова ледника Иган (Полярный Урал) по данным наземного радиозондирования в 2019 и 2021 гг.

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В 2019 и 2021 гг. на леднике ИГАН проводились георадарные измерения толщины льда (ВИРЛ-7, 20 МГц) и снежного покрова (Пикор-Лёд, 1600 МГц). Показано, что ледник имеет политермическую структуру, а его толщина достигает 114 м. Выполнена оценка величины и особенностей распределения снежной толщи по площади ледника и прилегающей территории.

Об авторах

И. И. Лаврентьев

Институт географии РАН

Автор, ответственный за переписку.
Email: lavrentiev@igras.ru
Россия, Москва

Г. А. Носенко

Институт географии РАН

Email: lavrentiev@igras.ru
Россия, Москва

А. Ф. Глазовский

Институт географии РАН

Email: lavrentiev@igras.ru
Россия, Москва

А. Н. Шеин

ГКУ ЯНАО “Научный центр изучения Арктики”

Email: lavrentiev@igras.ru
Россия, Салехард

М. Н. Иванов

Московский государственный университет имени М.В. Ломоносова

Email: lavrentiev@igras.ru
Россия, Москва

Я. К. Леопольд

ГКУ ЯНАО “Научный центр изучения Арктики”

Email: lavrentiev@igras.ru
Россия, Салехард

Список литературы

  1. Боровинский Б.А. Геофизические исследования ледников Полярного Урала // МГИ. 1964. Вып. 9. С. 227–230.
  2. Волошина А.П. Некоторые итоги исследований баланса массы ледников Полярного Урала // МГИ. 1988. Вып. 61. С. 44–51.
  3. Каталог ледников СССР. Т. 3. Северный Край. Ч. 3 Урал. Ленинград: Гидрометеоиздат, 1966. 52 с.
  4. Кульницкий Л.М., Гофман П.А., Токарев М.Ю. Математическая обработка данных георадиолокации и система RADEXPRO // Разведка и охрана недр. 2001. № 3. С. 6–11.
  5. Мачерет Ю.Я. Радиозондирование ледников. М.: Научный мир, 2006. 392 с.
  6. Мачерет Ю.Я. Применение геофизических методов для изучения мощности льда и строения горных ледников. Дисс. на соиск. уч. степ. канд. техн. наук. М.: Московский гос. ун-т, 1974. 174 с.
  7. Носенко Г.А., Муравьев А.Я., Иванов М.Н., Синицкий А.И., Кобелев В.О., Никитин С.А. Реакция ледников Полярного Урала на современные изменения климата // Лёд и Снег. 2020. Т. 60. № 1. С. 42–57. https://doi.org/10.31857/S2076673420010022
  8. Троицкий Л.С., Ходаков В.Г., Михалев В.И., Гуськов А.С., Лебедева И.М., Адаменко В.Н., Живкович Л.А. Оледенение Урала. М.: Наука, 1966. 355 с.
  9. Цветков Д.Г. 10 лет фотогеодезических работ на ледниках Полярного Урала (Опыт наземной съёмки и составления планов малых ледников с приложением топокарт ледников ИГАН и Обручева в масштабе 1:5000) // МГИ. 1970. Вып. 16. С. 245–257.
  10. Debeer C.M., Sharp M.J. Topographic influences on recent changes of very small glaciers in the Monashee Mountains, British Columbia, Canada // Journ. of Glaciology. 2009. V. 55. № 192. P. 691–700. https://doi.org/10.3189/002214309789470851
  11. ECMWF ERA5 (0.5×0.5 deg) // Электронный ресурс. https://climatereanalyzer.org/reanalysis/monthly_tseries/ (Дата обращения: 01.06.2022).
  12. Farinotti D., Huss M., Fürst J.J., Landmann J., Machguth H., Maussion F., Pandit A. A consensus, estimate for the ice thickness distribution of all glaciers on Earth // Nature Geosciences. 2019. V. 12. P. 168–173. https://doi.org/10.1038/s41561-019-0300-3
  13. Farinotti D. and the ITMIX Consortium: How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison experiment // The Cryosphere. 2017. V. 11. P. 949–970. https://doi.org/10.5194/tc-11-949-2017
  14. Fischer M., Huss M., Kummert M., Hoelzle M. Application and validation of long-range terrestrial laser scanning to monitor the mass balance of very small glaciers in the Swiss Alps // The Cryosphere. 2016. V. 10. P. 1279–1295. https://doi.org/10.5194/tc-10-1279-2016
  15. GISS Surface Temperature Analysis (v4) Station Data: Salekhard (66.5294N, 66.5294E) // Электронный ресурс. https://data.giss.nasa.gov/tmp/gistemp/STATIONS/tmp_RSM00023330_14_0_1/station.txt. (Дата обращения: 01.06.2022).
  16. Oerlemans J., Anderson B., Hubbard A., Huybrechts Ph., Johannesson T., Knap W.H., Schmeits M., Stroeven A.P., van de Wal R.S.W., Wallinga J., Zuo Z. Modelling the response of glaciers to climate warming // Climate Dynamic. 1998. V. 14. № 4. P. 267–274.
  17. Paul F., Rastner P., Azzoni R.S., Diolaiuti G., Fugazza D., Le Bris R., Nemec J., Rabatel A., Ramusovic M., Schwaizer G., Smiraglia C. Glacier shrinkage in the Alps continues unabated as revealed by a new glacier inventory from Sentinel-2 // Earth System Science Data. 2020. V. 12. P. 1805–1821. https://doi.org/10.5194/essd-12-1805-2020
  18. Prinz R., Heller A., Ladne M., Nicholson L.I., Kaser G. Mapping the Loss of Mt. Kenya’s Glaciers: An Example of the Challenges of Satellite Monitoring of Very Small Glaciers // Journ. of Geosciences. 2018. V. 8. №  5. P. 174–188. https://doi.org/10.3390/geosciences8050174
  19. Pfeffer W.T., Arendt A.A., Bliss A., Bolch T., Cogley J.G., Gardner A.S., and the Randolph Consortium. The Randolph Glacier Inventory: a globally complete inventory of glaciers // Journ. of Glaciology. 2014. V. 60. P. 537–552. https://doi.org/10.3189/2014JoG13J176
  20. Rabatel A., Francou B., Soruco A., Gomez J., Cáceres B., Ceballos J.L., Basantes R., Vuille M., Sicart J.‑E., Huggel C., Scheel M., Lejeune Y., Arnaud Y., Collet M., Condom T., Consoli G., Favier V., Jomelli V., Galarraga R., Ginot P., Maisincho L., Mendoza J., Ménégoz M., Ramirez E., Ribstein P., Suarez W., Villacis M., Wagnon P. Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change // The Cryosphere. 2013. № 7. P. 81–102. https://doi.org/10.5194/tc-7-81-2013
  21. Shahgedanova M., Nosenko G., Bushueva I., Ivanov M. Changes in area and geodetic mass balance of small glaciers, Polar Urals, Russia 1950–2008 // Journ. of Glaciology. 2017. V. 58. № 211. P. 953–964. https://doi.org/10.3189/2012JoG11J233
  22. Tielidze L., Nosenko G., Khromova T., Paul F. Strong acceleration of glacier area loss in the Greater Caucasus between 2000 and 2020 // The Cryosphere. 2022. V. 16. P. 489–504. https://doi.org/10.5194/tc-16-489-2022
  23. Vasilenko E.V., Machio F., Lapazaran J.J., Navarro F.J., Frolovskiy K. A compact lightweight multipurpose ground-penetrating radar for glaciological applications // Journ. of Glaciology. 2011. V. 57. P. 1113–1118. https://doi.org/10.3189/002214311798843430
  24. Zemp M., Nussbaumer S.U., Gärtner-Roer I., Bannwart J., Paul F., Hoelzle M. WGMS 2021. Global Glacier Change Bulletin No. 4 (2018–2019) // ISC(WDS)/IUGG(IACS)/UNEP/UNESCO/WMO. World Glacier Monitoring Service. Zurich- Switzerland. 2021. 278 p. https://doi.org/10.5904/wgms-fog-2021-05

Дополнительные файлы


© И.И. Лаврентьев, Г.А. Носенко, А.Ф. Глазовский, А.Н. Шеин, М.Н. Иванов, Я.К. Леопольд, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах