The influence of spatial variability of solar radiation on the mass balance of glaciers in the Grønfjorden Bay area (the Svalbard archipelago)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this article, we investigate how the irregular insolation of two low-elevated Svalbard glaciers exerts effect on rates of their surface melting. We compare the spatial distribution of rates of the surface lowering of glaciers Vøringbreen (0.76 km2) and Aldegondabreen (5.5 km2), both are located near Barentsburg settlement in the western part of Nordenskiöld Land (the Spitsbergen Island). As an approximation of the solar radiation flux, we used the potential incoming solar radiation calculated by the ArcticDEM digital elevation model for the period July 15–September 15, which is a typical time of ice ablation in the region under consideration. Motions of both glaciers are extremely slow, which allows assuming that lowering of their surfaces are identical to the rates of surface melting. We have found that both glaciers are distinctly divided into two parts, more and less sunlit. The spatial pattern of insolation of the Vøringbreen glacier is controlled by the shading of the walls surrounding the cirque, while the Aldegondabreen one due to its concave shape has two different areas with a more southern and more northern exposure. The lowering of the surface shows that the more and less illuminated parts differ significantly in ice ablation. The maximum differences in melting caused by the irregular insolation are 2.1 m of ice depth over five years for the Aldegondabreen Glacier (2008–2013 and 2013–2018) and 2.2 m over six years for the Vøringbreen Glacier (2013–2019), that is 40, 30 and 25% of the total values of the surface depression for the corresponding periods. Within every 50-meter altitude interval, correlation coefficients between surface ablation and insolation vary from –0.33 to –0.62 for the Aldegondabreen and from –0.50 to –0.92 for the Vøringbreen glacier. When compared with the vertical gradient of the ice melting, the variability of ablation caused by the irregular insolation correspond to a difference in altitudes of 45–50 m in vertical for the Aldegondabreen and 60 m for Vøringbreen. These values are significant taking into account the small altitudinal range of the glaciers in that part of Spitsbergen.

Full Text

Restricted Access

About the authors

A. V. Terekhov

Arctic and Antarctic Research Institute

Author for correspondence.
Email: antonvterekhov@gmail.com
Russian Federation, Saint Petersburg

U. V. Prokhorova

Arctic and Antarctic Research Institute

Email: antonvterekhov@gmail.com
Russian Federation, Saint Petersburg

V. E. Demidov

Arctic and Antarctic Research Institute

Email: antonvterekhov@gmail.com
Russian Federation, Saint Petersburg

References

  1. Vasilenko E. V., Glazovskiy A. F., Macheret Yu. Ya., Navarro F. Kh., Tokarev M. Yu., Kalashnikov A. Yu., Miroshnichenko D. E., Reznikov D. S. Radiophysical studies of the Aldegonda glacier on Svalbard in 1999. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1999, 90: 86–99 [In Russian].
  2. Krenke A. N., Khodakov V. G. About the relationship between the glacier surface melt and the air temperature. Materialy glyatsiologitcheskikh issledovaniy. Data of Glaciological Studies. 1966, 12: 153–164 [In Russian].
  3. Prokhorova U. V., Terekhov A. V., Demidov V. E., Verkulich S. R., Ivanov B. V. Intra-annual variability of the surface ablation of the Aldegondabreen glacier (Spitsbergen). Led i Sneg. Ice and Snow. 2023, 2 (63): 62–72. https://doi.org/10.31857/S2076673423020138 [In Russian].
  4. Romashova K. V., Chernov R. A., Vasilevich I. I. Study of the glacial flow of rivers in the Grønfjord bay basin (Western Svalbard). Problemy Arktiki i Antarktiki. Problems of Arctic and Antarctic. 2019, 65 (1): 34–45. https://doi.org/10.30758/0555-2648-2019-65-1-34-45 [In Russian].
  5. Sidorova O. R., Tarasov G. V., Verkulich S. R., Chernov R. A. Surface ablation variability of mountain glaciers of West Spitsbergen. Problemy Arktiki i Antarktiki. Problems of Arctic and Antarctic. 2019, 65 (4): 438–448. https://doi.org/10.30758/0555-2648-2019-65-4-438-448 [In Russian].
  6. Terekhov A. V., Demidov V. E., Kazakov E. E., Anisimov M. A., Verkulich S. R. Geodetic mass balance of Voring glacier, Western Spitsbergen, in 2013–2019. Kriosfera Zemli. Earth’s Cryosphere. 2020, XXIV (5): 55–63. https://doi.org/10.21782/KZ1560-7496-2020-5(55-63) [In Russian].
  7. Terekhov A. V., Tarasov G. V., Sidorova O. R., Demidov V. E., Anisimov M. A., Verkulich S. R. Estimation of mass balance of Aldegondabreen (Spitsbergen) in 2015–2018 based on ArcticDEM, geodetic and glaciological measurements. Led i Sneg. Ice and Snow. 2020, 2 (60): 192–200. https://doi.org/10.31857/S2076673420020033 [In Russian].
  8. Chernov R. A., Muraviev A. Y. Contemporary changes in the area of glaciers in the western part of the Nordenskjold Land (Svalbard). Led i Sneg. Ice and Snow. 2018, 4 (58): 462–472. https://doi.org/10.15356/2076-6734-2018-4-462-472 [In Russian].
  9. Chernov R. A., Kudikov A. V., Vshivtseva T. V., Osokin N. I. Estimation of the surface ablation and mass balance of Eustre Grønfjordbreen (Spitsbergen). Led i Sneg. Ice and Snow. 2019, 1 (59): 59–66. https://doi.org/10.15356/2076-6734-2019-1-59-66 [In Russian].
  10. Aas K. S., Dunse T., Collier E., Schuler T. V., Berntsen T. K., Kohler J., Luks B. The climatic mass balance of Svalbard glaciers: a 10-year simulation with a coupled atmosphere–glacier mass balance model. The Cryosphere. 2016, 10: 1089–1104. https://doi.org/10.5194/tc-10-1089-2016, 2016
  11. Arnold N. S., Rees W. G., Hodson A. J., Kohler J. Topographic controls on the surface energy balance of a high Arctic valley glacier. Journ. of Geophysical Research: Earth Surface. 2006, 111: F2.
  12. Böhner J., Antonić O. Land-Surface Parameters Specific to Topo-Climatology. Developments in soil science. 2009, 33: 195–226. https://doi.org/10.1016/S0166-2481(08)00008-1
  13. Elagina N., Kutuzov S., Rets E., Smirnov A., Chernov R., Lavrentiev I., Mavlyudov B. Mass balance of Austre Grønfjordbreen, Svalbard, 2006–2020, estimated by glaciological, geodetic and modeling aproaches. Geosciences. 2021, 11 (2): 78. https://doi.org/10.3390/geosciences11020078
  14. Fountain A. G., Vecchia A. How many Stakes are Required to Measure the Mass Balance of a Glacier? Geografiska Annaler, Series A: Physical Geography. 1999, 81 (4): 563–573. https://doi.org/10.1111/j.0435-3676.1999.00084.x
  15. Hagen J. O., Liestøl O. Long-Term Glacier Mass-Balance Investigations in Svalbard, 1950–88. Annals of Glaciology. 1990, 14: 102–106. https://doi.org/10.3189/S0260305500008351
  16. Hock R. A distributed temperature-index ice- and snowmelt model including potential direct solar radiation. Journ. of Glaciology. 1999, 45 (149): 101–111. https://doi.org/10.3189/S0022143000003087
  17. Mölg T., Cullen N. J., Hardy D. R., Winkler M., Kaser G. Quantifying Climate Change in the Tropical Midtroposphere over East Africa from Glacier Shrinkage on Kilimanjaro. Journ. of Climate. 2009, 22: 4162–4181. https://doi.org/10.1175/2009JCLI2954.1
  18. Noël B., Jakobs C. L., van Pelt W. J.J., Lhermitte S., Wouters B., Kohler J., Hagen J. O., Luks B., Reijmer C. H., van de Berg W. J., van den Broeke M. R. Low elevation of Svalbard glaciers drives high mass loss variability. Nature Communications. 2020, 11: 4597. https://doi.org/10.1038/s41467-020-18356-1
  19. Oerlemans J., Hoogendoorn N. Mass-Balance Gradients and Climatic Change. Journal of Glaciology. 1989, 35 (121): 399–405. https://doi.org/10.3189/S0022143000009333
  20. Ohmura A. Physical Basis for the Temperature-Based Melt-Index Method. Journ. of Applied Meteorology and Climatology. 2001, 40 (4): 753–761. https://doi.org/10.1175/1520-0450(2001)040<0753:PBFTTB>2.0.CO;2
  21. Olson M., Rupper S. Impacts of topographic shading on direct solar radiation for valley glaciers in complex topography. The Cryosphere. 2019, 13: 29–40. https://doi.org/10.5194/tc-13-29-2019
  22. Paterson, W.S.B. The Physics of Glaciers. Oxford: Pergammon Press, 1994: 480 p.
  23. Porter C., Morin P., Howat I., Noh M. J., Bates B., Peterman K., Keesey S., Schlenk M., Gardiner J., Tomko K., Willis M., Kelleher C., Cloutier M., Husby E., Foga S., Nakamura H., Platson M., Wethington M., Willamson C., Bauer G., Enos J., Arnold G., Kramer W., Becker P., Doshi A., D’Souza C., Cummens P., Laurier F., Bojensen M. 2018, “ArcticDEM”. Harvard Dataverse. V. 1. https://doi.org/10.7910/DVN/OHHUKH
  24. Prokhorova U., Terekhov A., Ivanov B., Demidov V. Heat balance of a low-elevated Svalbard glacier during the ablation season: A case study of Aldegondabreen. Arctic, Antarctic, and Alpine Research. 2023, 55 (1): 2190057. https://doi.org/10.1080/15230430.2023.2190057
  25. Terekhov A. V., Verkulich S., Borisik A., Demidov V., Prokhorova U., Romashova K., Anisimov M., Sidorova O., Tarasov G. Mass balance, ice volume, and flow velocity of the Vestre Grønfjordbreen (Svalbard) from 2013/14 to 2019/20. Arctic, Antarctic, and Alpine Research. 2022, 54 (1): 584–602. https://doi.org/10.1080/15230430.2022.2150122
  26. Terekhov A., Prokhorova U., Verkulich S., Demidov V., Sidorova O., Anisimov M., Romashova K. Two decades of mass-balance observations on Aldegondabreen, Spitsbergen: Interannual variability and sensitivity to climate change. Annals of Glaciology. 2023: 1–11. https://doi.org/10.1017/aog.2023.40
  27. Vincent C., Cusicanqui D., Jourdain B., Laarman O., Six D., Gilbert A., Walpersdorf A., Rabatel A., Piard L., Gimbert F., Gagliardini O., Peyaud V., Arnaud L., Thibert E., Brun F., Nanni U. Geodetic point surface mass balances: A new approach to determine point surface mass balances on glaciers from remote sensing measurements. Cryosphere. 2021. 3 (15): 1259–1276. https://doi.org/10.5194/TC-15-1259-2021
  28. Vincent C., Six D. Relative contribution of solar radiation and temperature in enhanced temperature-index melt models from a case study at Glacier de Saint-Sorlin, France. Annals of Glaciology. 2013, 54 (63): 11–17. https://doi.org/10.3189/2013AoG63A301
  29. Zou X., Ding M., Sun W., Yang D., Liu W., Huai B., Jin S., Xiao C. The surface energy balance of Austre Lovénbreen, Svalbard, during the ablation period in 2014. Polar Research. 2021, 40.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The location of Vøringbreen and Aldegondabreen glaciers (a), and the lowering of their surface — Vøringbreen in 2013–2019 (б), Aldegondabreen in 2008–2013 (в), Aldegondabreen in 2013–2018 (г).

Download (853KB)
3. Fig. 2. Surface aspect (а; в): 1 — north-north-east, 2 — east-north-east, 3 — east-south-east, 4 — north; averaged potential incoming solar radiation flux (15 July-15 September) on the glaciers (б; г): Vøringbreen (а; б) and Aldegondabreen (в; г).

Download (705KB)
4. Fig. 3. Relationship between the surface lowering, the altitude above sea level and the total potential incoming solar radiation flux (Aldegondabreen, 2008–2013 (а), Aldegondabreen, 2013–2018 (б), Vøringbreen, 2013–2019 (в)).

Download (153KB)
5. Fig. 4. Changes of cross direction profile of the Aldegondabreen Glacier in 1999–2018.

Download (188KB)
6. Fig. 5. Relationship between the surface lowering and the total potential incoming solar radiation, by elevation bins: 1 — 400–450 m, 2 — 350–400 m, 3 — 300–350 m, 4 — 250–300 m (Aldegondabreen Glacier, 2008–2013 (а), Aldegondabreen Glacier, 2013–2018 (б), Vøringbreen Glacier, 2013–2019 (в)).

Download (319KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies