Geoelectrical Models of Glacial-Permafrost Rock Formations of the Central Altai

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Received December 27,, 2022; revised August 10, 2023; accepted October 2, 2023

Geophysical observations of the structure of glacial-permafrost rock formations (hereinafter referred to as GPRF), common in the Central Altai in the valleys of the Chuya, Dzhelo, Elangash and Akkol rivers, were carried out by way of electrical resistivity tomography using the multi-electrode electro-prospecting station “Skala-48”. The main objective of the research was to identify the features of the internal structure of GPRF basing on the data of electrical sounding and aerial photography. The application of the geophysical method made it possible to localize rock-ice cores within the GPRF. Analysis of the geoelectrical cross-sections allowed finding that the rock-ice cores were characterized by high values of specific electrical resistance (SER) – from 10 to 100 kOhm ⋅ m and more. The depths of occurrence of rock-ice material on the geoelectrical sections varied from 2 to 10 m, on the average. Using the data of the aerial photography carried out above the studied areas, three-dimensional geoelectric models and maps of the distribution of SER were built for different depths. When analyzing the three-dimensional model of the GPRF, it is clearly noticeable that the features of the nature of the SER distribution reflects the inhomogeneous distribution of ice within the rock-ice core of the GPRF. As a result of our studies performed by the method of electrical tomography and interpretation of a three-dimensional geoelectric model, it was estimated that thicknesses of the rock-ice material varied from 7 to 32 m, thawing niches were revealed and localized, and the potential volume of the rock-ice core was determined. Thus, the above mentioned geophysical and geomorphological studies in that the features of the internal structure of GPRF in key areas have been established. For each GPRF, the thicknesses, resistivity, and depth of occurrence of rock-ice cores were determined, and the dependence of the morphological structure of the GPRF surface on internal structure of them was analyzed. A preliminary assessment of water reserves in individual GPRF had also been made.

About the authors

G. S. Dyakova

Altai State University

Email: galinabarnaul@mail.ru
Russia, Barnaul

A. A. Goreyavcheva

Novosibirsk State University

Author for correspondence.
Email: galinabarnaul@mail.ru
Russia, Novosibirsk

A. N. Shein

Trofimuk Institute of Petroleum Geology and Geophysics

Email: galinabarnaul@mail.ru
Russia, Novosibirsk

V. V. Potapov

Trofimuk Institute of Petroleum Geology and Geophysics

Email: galinabarnaul@mail.ru
Russia, Novosibirsk

R. D. Burym

Altai State University

Email: galinabarnaul@mail.ru
Russia, Barnaul

O. V. Ostanin

Altai State University

Email: galinabarnaul@mail.ru
Russia, Barnaul

V. V. Olenchenko

Trofimuk Institute of Petroleum Geology and Geophysics

Email: galinabarnaul@mail.ru
Russia, Novosibirsk

References

  1. Balkov E.V., Panin G.L., Manshtejn Yu.A., Manshtejn A.K., Beloborodov V.A. Electrotomography: equipment, technique and application experience. Geofizika. Geophysics. 2012, 6: 54–63 [In Russian].
  2. Galanin A.A. Rock glaciers as a specific type of the modern mountain glaciation in the North-East Asia. Vestnik Dal’nevostochnogo otdeleniya Rossijskoj akademii nauk. Bulletin of the Far Eastern Branch of the Russian Academy of Sciences. 2005, 5: 59–70 [In Russian].
  3. Galanin A.A. Rock glaciers: history of study and modern concepts. Vestnik Severo-Vostochnogo nauchnogo centra Dal’nevostochnogo otdeleniya Rossijskoj akademii nauk. Bulletin of the North-Eastern Scientific Center of the Far Eastern Branch of the Russian Academy of Sciences. 2008, 3: 15–33 [In Russian].
  4. Galanin A.A., Olenchenko V.V., Khristoforov I.I., Severskiy E.V., Galanina A.A. Highly dynamic rock glaciers of Tien Shan. Kriosfera Zemli. Cryosphere of the Earth. 2017, XXI (4): 58–74 [In Russian]. https://doi.org/10.21782/KZ1560-7496-2017-4(58-74)
  5. Gorbunov A.P. Rock glaciers of the Asian Russia. Kriosfera Zemli. Cryosphere of the Earth. 2006, 1: 22–28 [In Russian].
  6. Dyakova G.S., Olenchenko V.V., Ostanin O.V. Application of electrical tomography to study the internal structure of rock glaciers in Altai. Led i Sneg. Ice and Snow. 2017, 57 (1): 69–76 [In Russian]. https://doi.org/10.15356/2076-6734-2017-1-69-76
  7. Dyakova G.S., Ostanin O.V. Glyacial’no-merzlotnye kamennye obrazovaniya bassejna r. Chui (Gornyj Altaj): monografiya. Glacial-permafrost rock formations of the of the Chuya river basin (Altai Mountains): monograph. Barnaul: ASU, 2014: 152 p. [In Russian].
  8. Dyakova G.S., Ostanin O.V. Glacial-permafrost stone formations of Central Altai. Izvestiya Altajskogo gosudarstvennogo universiteta. News of the Altai State University. 2013, 3 (2): 167–170 [In Russian]. https://doi.org/10.14258/izvasu(2013)3.2-35
  9. Katalog lednikov SSSR. USSR Glacier Inventory. V. 15. Is. 1. Pt. 6: Chuya river basin. Leningrad: Hydrometeoizdat, 1978: 52 p. [In Russian].
  10. Lapkovskaya A.A., Olenchenko V.V., Dyakova G.S. The geoelectrical structure of rock glacier Sukorsky landslide (Altai Mountains). Interekspo Geo-Sibir’. Interexpo Geo-Siberia. 2016: 53–57 [In Russian].
  11. Lapkovskaya A.A., Olenchenko V.V., Potapov V.V., Shein A.N., Gornostaeva E.S., Gubin D.I. The structure of rock glacier of the Sukorsky landslide (Altai Mountains) according to the data of electrotomography. Arktika, Subarktika: mozaichnost', kontrastnost', variativnost' kriosfery: Trudy Mezhdunarodnoj konferencii. Arctic, Subarctic: mosaic, contrast, variability of the cryosphere: Proceedings of the International Conference. 2017: 195–198 [In Russian].
  12. Mihajlov N.N., Ostanin O.V., Fukui K. Glacial-permafrost rock formations of Altai and their changes. Vestnik Sankt-Peterburgskogo universiteta, ser. 7. Bulletin of St. Petersburg University, ser. 7. 2007, 3: 91–99 [In Russian].
  13. Ostanin O.V., Dyakova G.S., Alyab’ev D.Yu., Kovalev M.V. The experience of using a UAV for the study of glacial-permafrost rock formations in the valley of the Dzhelo (Central Altai). Geografiya i prirodopol’zovanie Sibiri. Geography and nature management of Siberia. 2019, 26: 141–148 [In Russian].
  14. Ostanin O.V., Dyakova G.S. Glacial-permafrost stone formations of Central Altai. Izvestiya Altajskogo gosudarstvennogo universiteta. News of the Altai State University. 2013, 3: 167–170 [In Russian]. https://doi.org/10.14258/izvasu(2013)3.2-35
  15. Tarakanov A.G. On the nourishment of rock glaciers of Tian Shan. Materialy glyaciologicheskih issledovanij. Data of Glaciological Studies, issue 67. M., 1989: 175–183 [In Russian].
  16. Bernhard L., Sutter F., Haeberli W., Keller F. Processes of snow/permafrost-interactions at a high-mountain site, Murtel/Corvatsch, Eastern Swiss Alps. 7th Inter. Conf. on Permafrost (Yellowknife, 23–27 June 1998), Collection Nordicana 57. 1998: 35–41.
  17. Bodin X. Present status and development of rock glacier complexes in south-faced valleys (45°n, French Alps). Geogr. Fis. Dinam. Quat. 2013: 27–38.
  18. Dyakova G.S., Goreyavcheva A.A., Potapov V.V., Shein A.N., Lobachev D.S., Ostanin O.V., Olenchenko V.V., Bobkova D.G. Internal structure of rock glaciers in Altai (The case of talus rock glacier in Dzhelo River Valley). Ukrainian Journ. of Ecology. 2019, 9 (4): 729–731.
  19. Dyakova G.S., Goreyavcheva A.A, Ostanin O.V., Olenchen- ko V.V., Biryukov R.Yu. Geophysical studies of the internal structure of glacial-permafrost stone formations of the Central Altai. Led i Sneg. Ice and Snow. 2020, 60 (1): 109–120 [In Russian]. https://doi.org/10.31857/S2076673420010027
  20. Haeberli W., Hoelzle M., Kaab A., Keller F., Vonder M.D., Wagner S. Ten years after drilling through the permafrost of the active rock glacier Murtel, Eastern Swiss Alps; answered questions and new perspectives. 7th International Conference on Permafrost (Yellowknife, NORSK GEOGRAFISK TIDSSKRIFT 59 (2005) Composition and internal structures of a rock glacier in Svalbard 147 23–27 June 1998). Collection Nordicana 57. 1998: 403–410.
  21. Haeberli W., Kaab A., Wagner S., Vonder Muhll D., Geissler P., Haas J.N., Glatzel-Mattheier H., Wagenbach D. Pollen analysis and C14-age of moss remains in a permafrost core recovered from the active rock glacier Murtel/Corvatsch, Swiss Alps: Geomporphological and Glaciological Implications. Journ. of Glaciology. 1999, 45: 1–8.
  22. Hauck C., Bottcher M., Maurer H. A new model for estimating subsurface ice content based on combined electrical and seismic data sets. The Cryosphere. 2011, 5: 453–468.
  23. Hausmann H., Krainer K., Bruckl E., Ullrich C. Internal structure, ice content and dynamics of Оlgrube and Kaiserberg rock glaciers (Оtztal Alps, Austria) determined from geophysical surveys. Austrian Journ. of Earth Sciences. 2012, 105 (2): 12–31.
  24. Jones D.B., Harrison S., Anderson K., Whalley W.B. Rock glaciers and mountain hydrology: A review. Earth-Science Reviews. 2019, 193: 66–90.
  25. Kaab A., Gudmundsson G.H., Hoelzle M. Surface deformation of creeping mountain permafrost; photogrammetric investigations on Murtel rock glacier, Swiss Alps. 7th Intern. Conf. on Permafrost (Yellowknife, 23–27 June 1998). Collection Nordicana 57. 1998: 531–537.
  26. Kneisel C., Bast A., Schwindt D. Quasi-3-D resistivity imaging – mapping of heterogeneous frozen ground conditions using electrical resistivity tomography. The Cryosphere. Discussion. 2009, 3: 895–918. https://doi.org/10.5194/tcd-3-895-2009
  27. Krainer K., Ribis M. A Rock Glacier Inventory of the Tyrolean Alps (Austria). Austrian Journ. of Earth Sciences. 2012, 105 (2): 32–47.
  28. Leopold M., Williams M.W., Caine N., Völkel J., Dethier D. Internal structure of the Green Lake 5 rock glacier, Colorado Front Range, USA. Permafrost and Periglacial Processes. 2011, 22 (2): 107–119.
  29. Maurer H., Hauck C. Instruments and Methods Geophysical imaging of alpine rock glaciers. Journ. of Glaciology. 2007, 53 (180): 110–120.
  30. Noetzli J., Arenson L.U., Bast A., Beutel J., Delaloye R., Farinotti D., Gruber S., Gubler H., Haeberli W., Hasler Andreas., Hauck C., Hiller M., Hoelzle M., Lambiel C., Pellet C., Springman S.M., Muehll D.V., Phillips M. Best Practice for Measuring Permafrost Temperature in Boreholes Based on the Experience in the Swiss Alps. Frontiers in Earth Science. 2021. Retrieved from: https://www.frontiersin.org/articles/10.3389/feart.2021.607875/full (Last access: 07 March 2023).

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (5MB)
3.

Download (5MB)
4.

Download (1MB)
5.

Download (1MB)
6.

Download (4MB)
7.

Download (2MB)

Copyright (c) 2023 Г.С. Дьякова, А.А. Гореявчева, А.Н. Шеин, В.В. Потапов, Р.Д. Бурым, О.В. Останин, В.В. Оленченко

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies