Spatial-Temporal Variability of the δ18O Values and the Snow Cover Structure on the Territory of the Meteorological Observatory of the Lomonosov Moscow State University

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Received July 3, 2023; revised September 4, 2023; accepted October 2, 2023

The isotopic composition (δ18O values) of snow layers, constructing snow cover to the time of reaching maximum snow water equivalent (SWE), was compared with the isotopic content of snow precipitated over the whole the winter season 2018/19 on the territory of the Meteorological Observatory of the Lomonosov Moscow State University (Moscow, Russia). Snow-sampling was carried out in a trench 20 m long simultaneously with detailed measurements of spatial variability of the structural characteristics of snow depth. Sampling was conducted for each precipitation event over the winter season, with the amount of precipitation also documented. It was found that the spatially-distributed enrichment with heavy oxygen isotopes along the trench fell within the range of 0–3.5‰, with average values for the four main formed snow layers changing from 1.3 to 2.5‰. The enrichment was not much dependent on the age of snow layer in the snowpack, and it was even more pronounced in the upper layers. This suggests that the post-precipitated change in the isotopic composition of snow cover for the conditions of the investigated site mainly took place when the snow was exposed to the atmosphere (due to sublimation and evaporation), while the processes of dry and wet metamorphism were either less important or even led to leveling the effects of isotopic fractionation. A positive correlation was found between the isotope composition of snow and the spatially varying snow density in each layer. This is most probably related to involvement of wind influence into the snow accumulation resulting in more dense snow. The spatial variability of the isotope composition of snow in each layer was smaller than changes in snow density and snow water equivalent.

About the authors

S. A. Sokratov

Lomonosov Moscow State University

Author for correspondence.
Email: sokratov@geogr.msu.ru
Russia, Moscow

A. Yu. Komarov

Lomonosov Moscow State University

Email: sokratov@geogr.msu.ru
Russia, Moscow

Yu. K. Vasil’chuk

Lomonosov Moscow State University

Email: sokratov@geogr.msu.ru
Russia, Moscow

N. A. Budantseva

Lomonosov Moscow State University

Email: sokratov@geogr.msu.ru
Russia, Moscow

J. Yu. Vasil’chuk

Lomonosov Moscow State University

Email: sokratov@geogr.msu.ru
Russia, Moscow

Yu. G. Seliverstov

Lomonosov Moscow State University

Email: sokratov@geogr.msu.ru
Russia, Moscow

P. B. Grebennikov

Lomonosov Moscow State University

Email: sokratov@geogr.msu.ru
Russia, Moscow

D. M. Frolov

Lomonosov Moscow State University

Email: sokratov@geogr.msu.ru
Russia, Moscow

References

  1. Borodulina G.S., Tokarev I.V., Levichev M.A. Isotopic composition (δ18O, δ2H) of Karelian snow cover. Led i Sneg. Ice and Snow. 2021, 61 (4): 521–532 [In Russian]. https://doi.org/10.31857/S2076673421040105
  2. Vasil’chuk Yu.K., Chizhova Yu.N., Budantseva N.A., Lychagin M.Y., Popovnin V.V., Tkachenko A.N. Isotopic composition of winter snow on the Aibga Ridge (Krasnaya Polyana), Western Caucasus. Arktika i Antarktika. Arctic and Antarctic. 2017, (3): 99–118 [In Russian]. https://doi.org/10.7256/2453-8922.2017.3.24402
  3. Ekaykin A.A., Vladimirova D.O., Tebenkova N.A., Brovkov E.V., Veres A.N., Kovyazin A.V., Kozachek A.V., Lindren M., Shibaev Yu.A., Preobrazhenskaya A.V., Lipenkov V.Ya. Spatial variability of snow isotopic composition and accumulation rate at the stake farm of Vostok station (Central Antarctica). Problemy Arktiki i Antarktiki. Arctic and Antarctic Research. 2019, 65 (1): 46–62 [In Russian]. https://doi.org/10.30758/0555-2648-2019-65-1-46-62
  4. Ekaykin A.A., Lipenkov V.Ya., Sokratova I.N., Preobrazhenskaya A.V. Isotopic composition of snow and ice in Antarctica: Climate signal and post-depositional noise. Problemy Arktiki i Antarktiki. Arctic and Antarctic Research. 2007, 2 (76): 96–105 [In Russian].
  5. Zykin N.N., Tokarev I.V., Vinograd N.A. Monitoring of stable isotopes (δ2H, δ18O) in precipitations of Moscow (Russia): Comparison for 2005–2014 and 1970–1979 periods. Vestnik Sankt-Peterburgskogo universiteta. Nauki o Zemle. Vestnik of Saint Petersburg University. Earth Sciences. 2021, 66 (4): 723–733 [In Russian]. https://doi.org/10.21638/spbu07.2021.405
  6. Fierz Ch., Armstrong R.L., Durand Y., Etchevers P., Greene E., McClung D.M., Nishimura K., Satyawali P.K., Sokratov S.A. International classification for seasonally falling snow (a guide to the description of snow thickness and snow cover) Russian edition (Data of Glaciological Studies, 2012–2). International classification for seasonally falling snow (a guide to the description of snow thickness and snow cover) Russian edition (Data of Glaciological Studies, 2012–2). Moscow: Institute of Geography RAS, Glaciological Association, 2012: 80 [In Russian].
  7. Frolov D.M., Komarov A.Yu., Seliverstov Yu.G., Sokratov S.A., Turchaninova A.S., Grebennikov P.B. Study of spatial-temporal heterogeneity of snow cover at the territory of MO MSU in Winter 2018/2019. Ekologo-klimaticheskie harakteristiki atmosfery Moskvy v 2018 g. po dannym Meteorologicheskoj observatorii MGU imeni M.V. Lomonosova. Environmental and climate characteristics of the atmosphere in Moscow in 2018 according to the measurements of the Moscow State University Meteorological Observatory. Moscow: MAKS Press, 2019. 225–230 [In Russian].
  8. Chizhova Ju.N., Vasil’chuk Yu.K. Deuterium excess in the snow and glaciers of the Polar Ural and massive ice of the south of the Yamal Peninsula and the coast of Baydaratskaya Bay. Arktika i Antarktika. Arctic and Antarctic. 2017, (2): 100–111 [In Russian]. https://doi.org/10.7256/2453-8922.2017.2.23342
  9. Chizhova Yu.N., Mikhalenko V.N., Vasil’chuk Yu.K., Budantseva N.A., Kozachek A.V., Kutuzov S.S., Lavrentiev I.I. Isotopic composition of oxygen in snow-and-firn thickness on the Eastern peak of Elbrus, the Caucasus. Led i Sneg. Ice and Snow. 2019, 59 (3): 293–305 [In Russian]. https://doi.org/10.15356/2076-6734-2019-3-426
  10. Ekologo-klimaticheskie harakteristiki atmosfery Moskvy v 2018 g. po dannym Meteorologicheskoj observatorii MGU imeni M.V. Lomonosova. Environmental and climate characteristics of the atmosphere in Moscow in 2018 according to the measurements of the Moscow State University Meteorological Observatory. Moscow: MAKS Press, 2019: 277 [In Russian]. https://doi.org/10.29003/m856.atm-2018
  11. Ala-aho P., Tetzlaff D., McNamara J.P., Laudon H., Kormos P., Soulsby C. Modeling the isotopic evolution of snowpack and snowmelt: Testing a spatially distributed parsimonious approach. Water Resources Research. 2017, 53 (7): 5813–5830. https://doi.org/10.1002/2017WR020650
  12. Allen S.T., Jasechko S., Berghuijs W.R., Welker J.M., Goldsmith G.R., Kirchner J.W. Global sinusoidal seasonality in precipitation isotopes. Hydrology and Earth System Sciences. 2019, 23 (8): 3423–3436. https://doi.org/10.5194/hess-23-3423-2019
  13. Beria H., Larsen J.R., Ceperley N.C., Michelon A., Vennemann T., Schaefli B. Understanding snow hydrological processes through the lens of stable water isotopes. WIREs Water. 2018, 5 (6): e1311. https://doi.org/10.1002/wat2.1311
  14. Cooper L.W. Isotopic fractionation in snow cover. In Kendall C., McDonnell J.J. (Eds.) Isotope tracers in catchment hydrology. New York: Elsevier Sci., 1998: 119–136. https://doi.org/10.1016/B978-0-444-81546-0.50011-2
  15. Dansgaard W. Stable isotopes in precipitation. Tellus. 1964, 16 (4): 436–468. https://doi.org/10.1111/j.2153-3490.1964.tb00181.x
  16. Dietermann N., Weiler M. Spatial distribution of stable water isotopes in alpine snow cover. Hydrology and Earth System Sciences. 2013, 17 (7): 2657–2668. https://doi.org/10.5194/hess-17-2657-2013
  17. Ebner P.P., Steen-Larsen H.C., Stenni B., Schneebeli M., Steinfeld A. Experimental observation of transient δ18O interaction between snow and advective airflow under various temperature gradient conditions. The Cryosphere. 2017, 11 (4): 1733–1743. https://doi.org/10.5194/tc-11-1733-2017
  18. Environmental Isotopes in the Hydrological Cycle. Principles and Applications (IHP-V IAEA Technical Documents in Hydrology, No. 39). V. 1. Ed. W.G. Mook. IAEA, UNESCO, 2001 (reprint [2020]): 164 p.
  19. Koeniger P., Hubbart J.A., Link T., Marshall J.D. Isotopic variation of snow cover and streamflow in response to changes in canopy structure in a snow-dominated mountain catchment. Hydrological Processes. 2008, 22 (4): 557–566. https://doi.org/10.1002/hyp.6967
  20. Konishchev V.N., Golubev V.N., Sokratov S.A. Sublimation from a seasonal snow cover and an isotopic content of ice wedges in the light of a palaeoclimate reconstruction. In Phillips M., Springman S.M., Arenson L.U. (Eds.) ICOP 2003. Permafrost. Proceedings of the Eighth International Conference on Permafrost, 21–25 July 2003, Zürich, Switzerland. Vol. 1. Lisse: Swets & Zeitlinger, 2003: 585–590.
  21. Kozachek A., Mikhalenko V., Masson-Delmotte V., Ekaykin A., Ginot P., Kutuzov S., Legrand M., Lipenkov V., Preunkert S. Large-scale drivers of Caucasus climate variability in meteorological records and Mt El’brus ice cores. Climate of the Past. 2017, 13 (5): 473–489. https://doi.org/10.5194/cp-13-473-2017
  22. Lee J., Feng X., Faiia A.M., Posmentier E.S., Kirchner J.W., Osterhuber R., Taylor S. Isotopic evolution of a seasonal snowcover and its melt by isotopic exchange between liquid water and ice. Chemical geology. 2010, 270 (1–4): 126–134. https://doi.org/10.1016/j.chemgeo.2009.11.011
  23. Mikhalenko V., Sokratov S., Kutuzov S., Ginot P., Legrand M., Preunkert S., Lavrentiev I., Kozachek A., Ekaykin A., Faïn X., Lim S., Schotterer U., Lipenkov V., Toropov P. Investigation of a deep ice core from the Elbrus western plateau, the Caucasus, Russia. The Cryosphere. 2015, 9 (6): 2253–2270. https://doi.org/10.5194/tc-9-2253-2015
  24. Penna D., Ahmad M., Birks S.J., Bouchaou L., Brenčič M., Butt S., Holko L., Jeelani G., Martínez D.E., Melikadze G., Shanley J.B., Sokratov S.A., Stadnyk T., Sugimoto A., Vreča P. A new method of snowmelt sampling for water stable isotopes. Hydrological Processes. 2014, 28 (22): 5637–5644. https://doi.org/10.1002/hyp.10273
  25. Proksch M., Rutter N., Fierz Ch., Schneebeli M. Intercomparison of snow density measurements: bias, precision, and vertical resolution. The Cryosphere. 2016, 10 (1): 371–384. https://doi.org/10.5194/tc-10-371-2016
  26. Sturm M., Holmgren J., Liston G.L. A seasonal snow cover classification system for local to global applications. Journ. of Climate. 1995, 8 (5 (Part 2)): 1261–1283. https://doi.org/10.1175/1520-0442(1995)008<1261:ASSCCS>2.0.CO;2
  27. Taylor S., Feng X., Kirchner J.W., Osterhuber R, Klaue B., Renshaw C.E. Isotopic evolution of a seasonal snowpack and its melt. Water Resources Research. 2001, 37 (3): 759–769. https://doi.org/10.1029/2000WR900341
  28. Vasil’chuk Yu., Chizhova Ju.N., Budantseva N., Vystavna Yu., Eremina I. Stable isotope composition of precipitation events revealed modern climate variability. Theoretical and Applied Climatology. 2022, 147(3–4): 1649–1661. https://doi.org/10.1007/s00704-021-03900-w
  29. Vasil’chuk Yu., Chizhova Ju.N., Frolova N., Budantseva N., Kireeva M., Oleynikov A., Tokarev I., Rets E., Vasil’chuk A. A variation of stable isotope composition of snow with altitude on the Elbrus Mountain, Central Caucasus. Geography, Environment, Sustainability. 2020, 13 (1): 172–182. https://doi.org/10.24057/2071-9388-2018-22
  30. Vasil’chuk Yu.K., Vasil’chuk A.C., Budantseva N.A. Holocene January paleotemperature of northwestern Siberia reconstructed based on stable isotope ratio of ice wedges. Permafrost and Periglacial Processes. 2023, 34 (1): 142–165. https://doi.org/10.1002/ppp.2177
  31. Wahl S., Steen-Larsen H.C., Hughes A.G., Dietrich L.J., Zuhr A., Behrens M., Faber A.-K., Hörhold M. Atmosphere-snow exchange explains surface snow isotope variability. Geophysical Research Letters. 2022, 49 (20): e2022GL099529. https://doi.org/10.1029/2022GL099529

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (787KB)
3.

Download (1MB)
4.

Download (893KB)
5.

Download (30KB)
6.

Download (258KB)
7.

Download (791KB)

Copyright (c) 2023 С.А. Сократов, А.Ю. Комаров, Ю.К. Васильчук, Н.А. Буданцева, Дж.Ю. Васильчук, Ю.Г. Селиверстов, П.Б. Гребенников, Д.М. Фролов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies