Quality of Snow Cover Characteristics Derived from ERA 5-Land Reanalysis for the Territory of Perm Krai

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Received March 31, 2023; revised June 6, 2023; accepted June 27, 2023

Agreement between values of the mean monthly snow depth provided by the ERA 5-Land reanalysis and similar characteristics of snow cover calculated on the basis of the extended hydrometeorological monitoring performed in the Perm Region for 1990–2020 is analyzed. It was found that ERA 5-Land in 73% of cases reproduces the presence/absence of snow during the onset period, and in 53% – during the period of snow loss. The conclusions made in the authors' previous studies based on more limited material were generally confirmed. It is shown that the reanalysis values of the snow depth are overestimated in relation to instrumental measurements for most of the hydrometeorological stations of the Perm Region. In space, the magnitude of the reanalysis error increases from the southwest to the northeast of the region, with the exception of its central part, where the influence of the Kama water reservoir is perceptible. But the interannual variability of the average snow depth in the Perm Region was reproduced by the ERA 5-Land reanalysis adequately. For 30 years, the magnitude of the reanalysis error decreased as it was compared with 61% observation points. The analysis of seasonal variability showed that in ERA 5-Land time of the maximum snow depth was shifted to earlier onset. The complete coincidence of the seasonal course was recorded only in 5% of hydrometeorological monitoring sites. The value of the average monthly discrepancies between the data of the reanalysis and the information of the posts as a whole exceeds the similar characteristic for the stations, which is especially evident during the period of active snowmelt.

About the authors

A. D. Kryuchkov

Perm State University

Author for correspondence.
Email: Candy55man@ya.ru
Russia, Perm

N. A. Kalinin

Perm State University

Email: Candy55man@ya.ru
Russia, Perm

I. A. Sidorov

Perm State University

Email: Candy55man@ya.ru
Russia, Perm

References

  1. Astafurov V.G., Evsyutkin T.V., Kuryanovich K.V., Skorokhodov A.V. Statistical models of image texture and physical parameters of cloudiness during snow cover periods on the Russian Federation territory from MODIS data. Optika atmosfery i okeana Optics of the atmosphere and ocean 2018, 31 (7): 537–541. https://doi.org/10.15372/AOO20180706 [In Russian].
  2. Bulygina O.N., Razuvaev V.N., Aleksandrova T.M. Description of the data array characteristics of snow cover at meteorological stations in Russia and the former USSR" Certificate of state registration of the database No. 2014621201. Retrieved from: http://meteo.ru/data/165-snow-cover#opisanie-massiva-dannykh (Last access: 26 January 2023) [In Russian].
  3. Grigorev V.YU., Frolova N.L., Kireeva M.B., Stepanenko V.M. Spatial and temporal variability of ERA5 precipitation accuracy over Russia. Izvestiya RAN. Ser. geogr. Proc. of the RAS. Geographical series. 2022, 86 (3): 435–446. https://doi.org/10.31857/S2587556622030062 [In Rus- sian].
  4. Evseeva N.S., Petrov A.I., Kashiro M.A., Kvasnikova Z.N., Batmanova A.S., Khon A.V. Influence of the relief and vegetation on the distribution of the snow cover in the pools of small rivers. Geosfernye issledovaniya. Geospheric Research. 2017, 4: 64–74. https://doi.org/10.17223/25421379/5/6 [In Russian].
  5. Kazakova E.V. Yezhednevnaya otsenka lokal’nykh znacheniy i ob”yektivnyy analiz kharakteristik snezhnogo pokrova v ramkakh sistemy chislennogo prognoza pogody COSMO-Ru. Daily assessment of local values and objective analysis of snow cover characteristics in the framework of the COSMO-Ru numerical weather forecast system. PhD. Moscow: Hydrometeorol. scientific-research center of Russia. 2015: 181 p. [In Russian].
  6. Kalinin V.G., Shaydulina A.A., Rusakov V.S., Fasakhov M.A. Mathematical and geoinformation modeling of snowmelt process in the river drainage basins of the Kama region. Led I Sneg. Ice and Snow. 2022, 62 (1): 63–74. https://doi.org/10.31857/S2076673422010116 [In Russian].
  7. Kitaev L.M., Zheltukhin A.S., Korobov E.D., Ableeva V.A. Snow Cover: Characteristics of Local Distribution in Forests as Possible Source of Satellite Data Errors. Izvestiya RAN. Ser. geogr. Proc. of the RAS. Geographical series. 2020, 84 (6): 855–863. https://doi.org/10.31857/S2587556620060072 [In Rus- sian].
  8. Kitaev L.M., Titkova T.B., Turkov D.V. Accuracy of reproduction of interannual variability of snow storages of the East European Plain by satellite data illustrated by the example of the GLOBSNOW (SWE) product. Sovremennyie problemy distancionnogo zondirovaniya Zemli iz kosmosa. Current Problems in Remote Sensing of the Earth from Space, 2020, 17 (1): 164–175. https://doi.org/10.21046/2070-7401-2020-17-1-164-175 [In Russian].
  9. Korshunova N.N., Davletshin S.G., Arzhanova N.M. Variability of snow cover characteristics over the Russian territory. Fundamental’naya I Prikladnaya Klimatologiya. Fundamental and Аpplied Сlimatology. 2021, 7 (1): 80–100. https://doi.org/10.21513/2410-8758-2021-1-80-100 [In Russian].
  10. Kotova E.I. Assessment of factors influence on the composition of snow cover in the Russian Arctic. Uspehi Sovremennogo Estestvozmaniya. Advances in Current Natural Sciences. 2019, 10: 158–163. [In Russian].
  11. Kryuchkov A.D. Prostranstvenno-vremennoe raspredelenie harakteristik snezhnogo pokrova na territorii Permskogo kraya. Spatial and temporal distribution of snow cover characteristics on the territory of the Perm region. PhD. Perm: Perm State National Research University, 2021: 223 p. http://www.psu.ru/files/docs/science/dissertatsionnye-sovety/kryuchkov/disser.pdf [In Russian].
  12. Kryuchkov A.D., Istomina O.V. Snow cower dynamic on the territory of the Perm region in the 1988–2018. Vestnik Udmurtskogo Universiteta. Seriya Biologiya. Nauki o Zemle. Bulletin of Udmurt University. Series Biology. Earth Sciences. 2019, 29 (2): 243–251 [In Russian].
  13. Kryuchkov A.D., Kalinin N.А. Comparison of snow cover characteristics according to meteorological stations and ERA 5-Land reanalysis in the Perm Region. Gidrometeorologicheskiye Issledovaniya i Prognozy. Hydrometeorological Research and Forecasting. 2021, 2 (380): 95–110. https://doi.org/10.37162/2618-9631-2021-2-95-110 [In Russian].
  14. Kurakina N.I., Mikhaylova A.A. Cartographic modelling of snow cover in geographic information system technology. Izvestia SPbETU “LETI”. Proc. of Saint Petersburg Electrotechnical University. 2020, 1: 23–27 [In Russian].
  15. Martynova Yu.V., Matyukhina A.A., Voropay N.N., Krupchatnikov V.N. Features of the snow cover formation in Siberia and the relationship with the atmospherics dynamics anomalies in the Northern Hemisphere. Ekologiya. Ekonomika. Informatika. Seriya: Sistemnyj analiz i modelirovanie ekonomicheskih i ekologicheskih system. Ecology. Economy. Computer science. Series: System analysis and modeling of economic and ecological systems. 2021, 1 (6): 118–125. https://doi.org/10.23885/2500-395X-2021-1-6-118-125 [In Russian].
  16. Meteorological monthly guide. Ural’skoe UGMS. Ural UGMS. 1990–2020, 9 (2): 1–5, 10–13. [In Russian].
  17. Popova V.V., Morozova P.A., Titkova T.B., Semenov V.A., Cherenkova E.A., Shiryaeva A.V., Kitaev L.M. Regional features of present winter snow accumulation variability in the North Eurasia from data of observations, reanalysis and satellites. Led i Sneg. Ice and Snow. 2015, 55 (4): 73–86. https://doi.org/10.15356/2076-6734-2015-4-73-86 [In Russian].
  18. Sidorov I.A. Verification of snow cover characteristics according to the ERA 5-LAND reanalysis and observation points of Perm region for 1990-2020. Geograficheskoe izuchenie territorial’nyh sistem: Sbornik materialov HVI Vserossijskoj nauchno-prakticheskoj konferencii studentov, aspirantov i molodyh uchyonyh, Perm’, 13 maya 2022 goda. Geographical Research of Territorial Systems: Collection of materials of the XVI All-Russian Scientific and Practical Conference students, graduate students and young scientists (May 13, 2022). Perm: Perm State University. 2022: 160–164 [In Russian].
  19. Sidorov I.A. Comparative analysis of snow cover characteristics according to hydrometeorological stations and posts on the territory of the perm region Geographical Research of Territorial Systems: Collection of materials of the XV All-Russian Scientific and Practical Conference students, graduate students and young scientists (May 11–12, 2021). Perm: Perm State University. 2021: 181–185 [In Russian].
  20. Turkov D.V., Sokratov V.S. Calculating of snow cover characteristics on a plain territory using the model SPONSOR and data of reanalyses (by the example of Moscow region). Led i Sneg. Ice and Snow. 2016, 56 (3): 369–380. https://doi.org/10.15356/2076-6734-2016-3-369-380 [In Russian].
  21. Turkov D.V., Sokratov V.S., Titkova T.B. Snow cover of Western Siberia according to calculations based on the SPONSOR model of local heat and moisture exchange and reanalysis data. Atmospheric and oceanic optics. Atmospheric physics: Proc. of the XXIII International Symposium. Irkutsk: V.E. Zuev Institute of Atmospheric Optics of Siberian Branch of the Russian Academy of Science. 2017: 391–395 [In Russian].
  22. Khan V.M., Rubinshtein K.G., Shmakin A.B. Comparison of seasonal and interannual variability of snow cover in Russian watersheds according to observations and reanalyses. Izvestiya RAN. Fizika atmosfery i okeana. Proc. of the RAS. Physics of the atmosphere and ocean. 2007, 43 (1): 59–69 [In Russian].
  23. Churiulin E.V., Kopeykin V.V., Rozinkina I.A., Frolova N.L., Churiulina A.G. Analysis of snow cover characteristics by satellite and model data for different catchment areas are located on the territory of the Russian Federation. Gidrometeorologicheskiye Issledovaniya i Prognozy. Hydrometeorological Research and Forecasting. 2018, 2 (368): 120–143 [In Russian].
  24. Shikhov A.N., Chernykh V.N., Ayurzhanaev A.A., P’yankov S.V. Calculation of snow accumulation in the Selenga river basin based on data from global numerical models of the atmosphere with verification by satellite data. Materialy 20 Mezhdunarodnoi konferencii “Sovremennyie problemy distancionnogo zondirovaniya Zemli iz kosmosa”. Moskow: Space Research Institute RAS. 2022: 124 p. https://doi.org/10.21046/20DZZconf-2022a [In Russian].
  25. Era 5-Land. Climate Data Store. Copernicus Climate Change Service. Retrieved from: https://cds.climate.copernicus.eu/cdsapp#!/home (Last access: 23 January 2023).
  26. Kunkel K.E., Robinson D.A., Champion S., Yin X., Estilow T., Frankson R.M. Trends and extremes in Northern Hemisphere snow characteristics. Current Climate Change Report. 2016, 2: 65–73.
  27. Kouki K., Luojus K., Riihelä A. Evaluation of snow cover properties in ERA5 and ERA5-Land with several satellite-based datasets in the Northern Hemisphere in spring 1982–2018. The Cryosphere Discuss. [preprint]. 2023. https://doi.org/10.5194/tc-2023-53
  28. Pelosi A., Terribile F., D’Urso G., and Chirico, G.B. Comparison of ERA5-Land and UERRA MESCAN-SURFEX reanalysis data with spatially interpolated weather observations for the regional assessment of reference evapotranspiration. Water. 2020, 12 (6): 1669.
  29. Sheffield J., Goteti G., Wood E.F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. Journ. of Climatology. 2006, 19: 3088–3111.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (1MB)
4.

Download (38KB)
5.

Download (104KB)

Copyright (c) 2023 А.Д. Крючков, Н.А. Калинин, И.А. Сидоров

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».