Кишечная микробиота и короткоцепочечные жирные кислоты в патогенезе некротизирующего энтероколита у глубоко недоношенных новорожденных

Обложка
  • Авторы: Кукаев Е.Н.1,2, Токарева А.О.1, Крог-Йенсен О.А.1,3, Лёнюшкина А.А.1, Стародубцева Н.Л.1,4
  • Учреждения:
    1. Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Министерства здравоохранения Российской Федерации
    2. ФГБУН Федерального исследовательского центра химической физики имени Н.Н. Семёнова РАН
    3. Федеральное государственное автономное образовательное учреждение высшего образования Первый Московский государственный медицинский университет имени И.М. Сеченова Министерства здравоохранения Российской Федерации (Сеченовский университет)
    4. Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)»
  • Выпуск: Том 17, № 4 (2025)
  • Страницы: 38-51
  • Раздел: Обзоры
  • URL: https://journals.rcsi.science/2075-8251/article/view/365058
  • DOI: https://doi.org/10.32607/actanaturae.27623
  • ID: 365058

Цитировать

Полный текст

Аннотация

Формирование симбиотической кишечной экосистемы – необходимый этап адаптации новорожденного ребенка. Микробиом кишечника глубоко недоношенных новорожденных характеризуется нестабильностью, снижением микробного разнообразия с преобладанием грамотрицательных Proteobacteria, что сопряжено с одним из ключевых патогенетических механизмов развития некротизирующего энтероколита (НЭК). Короткоцепочечные жирные кислоты (КЦЖК) представляют собой основные бактериальные метаболиты, играющие важную роль в поддержании целостности кишечного барьера и регуляции иммунологической реактивности кишечника. В обзоре обсуждается роль кишечной микробиоты и КЦЖК при некротизирующем энтероколите у новорожденных в аспекте потенциальных диагностических и терапевтических возможностей. В клинических исследованиях содержания КЦЖК в кале недоношенных новорожденных с НЭК обнаружено выраженное снижение общего уровня КЦЖК и большинства бактериальных метаболитов в отдельности, что подтверждено в ряде модельных экспериментов. Для уточнения роли КЦЖК в развитии НЭК, определения их диагностического потенциала и возможностей создания комплексных про- и постбиотических формул необходимо проведение многоцентровых мультиомиксных исследований на большой выборке глубоко недоношенных новорожденных.

Об авторах

Евгений Николаевич Кукаев

Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Министерства здравоохранения Российской Федерации; ФГБУН Федерального исследовательского центра химической физики имени Н.Н. Семёнова РАН

Автор, ответственный за переписку.
Email: e_kukaev@oparina4.ru
ORCID iD: 0000-0002-8397-3574
SPIN-код: 3377-5462
Scopus Author ID: 6507367648
ResearcherId: C-9408-2014

Институт энергетических проблем химической физики им. В.Л. Тальрозе ФГБУН Федерального исследовательского центра химической физики имени Н.Н. Семёнова РАН

Россия, Москва, 117997; Москва, 119991

Алиса Олеговна Токарева

Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Министерства здравоохранения Российской Федерации

Email: a_tokareva@oparina4.ru
SPIN-код: 8552-7215
Россия, Москва, 117997

Ольга Александровна Крог-Йенсен

Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Министерства здравоохранения Российской Федерации; Федеральное государственное автономное образовательное учреждение высшего образования Первый Московский государственный медицинский университет имени И.М. Сеченова Министерства здравоохранения Российской Федерации (Сеченовский университет)

Email: o_krogh@oparina4.ru
ORCID iD: 0000-0002-5178-5659
SPIN-код: 9546-0975
Scopus Author ID: 57214220453
Россия, Москва, 117997; Москва, 119048

Анна Алексеевна Лёнюшкина

Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Министерства здравоохранения Российской Федерации

Email: a-lenushkina@yandex.ru
ORCID iD: 0000-0001-8929-2991
SPIN-код: 5464-0656
Scopus Author ID: 57202802436
ResearcherId: AAJ-6896-2021
Россия, Москва, 117997

Наталия Леонидовна Стародубцева

Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Министерства здравоохранения Российской Федерации; Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)»

Email: n_starodubtseva@oparina4.ru
ORCID iD: 0000-0001-6650-5915
SPIN-код: 3673-7263
Scopus Author ID: 50462424600
ResearcherId: Y-6378-2019
Россия, Москва, 117997; Долгопрудный, Московская область, 141701

Список литературы

  1. Neu J, Mshvildadze M, Mai V. A roadmap for understanding and preventing necrotizing enterocolitis. Current Gastroenterology Reports. 2008;10(5):450-457. doi: 10.1007/s11894-008-0084-x
  2. Ahearn-Ford S, Berrington JE, Stewart CJ. Development of the gut microbiome in early life. Experimental Physiology. 2022;107(5):415-421. doi: 10.1113/EP089919
  3. Thänert R, Sawhney SS, Schwartz DJ, Dantas G. The resistance within: Antibiotic disruption of the gut microbiome and resistome dynamics in infancy. Cell Host and Microbe. 2022;30(5):675-683. doi: 10.1016/j.chom.2022.03.013
  4. Reichardt N, Duncan SH, Young P, et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME Journal. 2014;8(6):1323-1335. doi: 10.1038/ismej.2014.14
  5. Scheiman J, Luber JM, Chavkin TA, et al. Meta’omic analysis of elite athletes identifies a performance- enhancing microbe that functions via lactate metabolism. Nature Medicine. 2019;25(7):1104-1109. doi: 10.1038/s41591-019-0485-4.Meta
  6. Nikitina IV, Lenyushkina AA, Krogh-Jensen OA, et al. Recurrent necrotizing enterocolitis: predictors, biological markers, diagnostic signs, and therapeutic approaches – a year-long case study. Neonatology: News, Opinions, Training. 2024;12(3):66-77. doi: 10.33029/2308–2402-2024-12-3-66-77
  7. Jones IH, Hall NJ. Contemporary Outcomes for Infants with Necrotizing Enterocolitis—A Systematic Review. Journal of Pediatrics. 2020;220:86-92.e3. doi: 10.1016/j.jpeds.2019.11.011
  8. Scheese DJ, Sodhi CP, Hackam DJ. New insights into the pathogenesis of necrotizing enterocolitis and the dawn of potential therapeutics. Seminars in Pediatric Surgery. 2023;32(3):151309. doi: 10.1016/j.sempedsurg.2023.151309
  9. Zhou Q, Niño DF, Yamaguchi Y, et al. Necrotizing enterocolitis induces T lymphocyte–mediated injury in the developing mammalian brain. Science Translational Medicine. 2021;13(575):1-30. doi: 10.1126/SCITRANSLMED.AAY6621
  10. Fullerton BS, Hong CR, Velazco CS, et al. Severe neurodevelopmental disability and healthcare needs among survivors of medical and surgical necrotizing enterocolitis: A prospective cohort study. Journal of Pediatric Surgery. 2018;53(1):101-107. doi: 10.1016/j.jpedsurg.2017.10.029
  11. Pupysheva AF, Savelyeva EI, Piskunova VV, et al. Fecal Calprotectin Levels Dynamics in Newborns with High-Risk of Necrotizing Enterocolitis. Pediatric Pharmacology. 2023;20(1):51-55. doi: 10.15690/pf.v20i1.2529
  12. Thakkar HS, Lakhoo K. Necrotizing enterocolitis. Surgery (United Kingdom). 2022;40(11):713-716. doi: 10.1016/j.mpsur.2022.09.007
  13. Hsu CY, Khachatryan LG, Younis NK, et al. Microbiota-derived short chain fatty acids in pediatric health and diseases: from gut development to neuroprotection. Frontiers in Microbiology. 2024;15(October):1456793. doi: 10.3389/fmicb.2024.1456793
  14. Facchin S, Bertin L, Bonazzi E, et al. Short-Chain Fatty Acids and Human Health: From Metabolic Pathways to Current Therapeutic Implications. Life. 2024;14(5):1-44. doi: 10.3390/life14050559
  15. He Y, Du W, Xiao S, et al. Colonization of fecal microbiota from patients with neonatal necrotizing enterocolitis exacerbates intestinal injury in germfree mice subjected to necrotizing enterocolitis-induction protocol via alterations in butyrate and regulatory T cells. Journal of Translational Medicine. 2021;19(1):510. doi: 10.1186/s12967-021-03109-5
  16. Bäckhed F, Roswall J, Peng Y, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host and Microbe. 2015;17(5):690-703. doi: 10.1016/j.chom.2015.04.004
  17. Cuna A, Morowitz MJ, Ahmed I, Umar S, Sampath V. Dynamics of the preterm gut microbiome in health and disease. American Journal of Physiology - Gastrointestinal and Liver Physiology. 2021;320(4):G411-G419. doi: 10.1152/AJPGI.00399.2020
  18. Yao Y, Cai X, Ye Y, Wang F, Chen F, Zheng C. The Role of Microbiota in Infant Health: From Early Life to Adulthood. Frontiers in Immunology. 2021;12(October):708472. doi: 10.3389/fimmu.2021.708472
  19. Olm MR, Brown CT, Brooks B, et al. Identical bacterial populations colonize premature infant gut, skin, & oral microbiomes & exhibit different in situ growth rates. Genome Research. 2017;27(4):601-612. doi: 10.1101/gr.213256.116
  20. Gibson MK, Wang B, Ahmadi S, et al. Developmental dynamics of the preterm infant gut microbiota and antibiotic resistome. Nature Microbiology. 2016;1:16024. doi: 10.1038/nmicrobiol.2016.24.Developmental
  21. Gasparrini AJ, Wang B, Sun X, et al. Metagenomic signatures of early life hospitalization and antibiotic treatment in the infant gut microbiota and resistome persist long after discharge. Nature Microbiology. 2016;4(12):2285-2297. doi: 10.1038/s41564-019-0550-2.Metagenomic
  22. Wandro S, Osborne S, Enriquez C, Bixby C, Arrieta A, Whiteson K. The Microbiome and Metabolome of Preterm Infant Stool Are Personalized and Not Driven by Health Outcomes, Including Necrotizing Enterocolitis and Late-Onset Sepsis. mSphere. 2018;3(3):e00104-18. doi: 10.1128/msphere.00104-18
  23. Young GR, Van Der Gast CJ, Smith DL, Berrington JE, Embleton ND, Lanyon C. Acquisition and Development of the Extremely Preterm Infant Microbiota Across Multiple Anatomical Sites. Journal of Pediatric Gastroenterology and Nutrition. 2020;70(1):12-19. doi: 10.1097/MPG.0000000000002549
  24. Patel AL, Mutlu EA, Sun Y, et al. Longitudinal Survey of Microbiota in Hospitalized Preterm Very Low Birth Weight Infants. J Pediatr Gastroenterol Nutr. 2016;62(2):292-303. doi: 10.1097/MPG.0000000000000913.Longitudinal
  25. Stewart CJ, Embleton ND, Marrs ECL, et al. Temporal bacterial and metabolic development of the preterm gut reveals specific signatures in health and disease. Microbiome. 2016;4(1):67. doi: 10.1186/s40168-016-0216-8
  26. Unger S, Stintzi A, Shah P, Mack D, O’Connor DL. Gut microbiota of the very-low-birth-weight infant. Pediatric Research. 2015;77(1):205-213. doi: 10.1038/pr.2014.162
  27. Wang Y, Hoenig JD, Malin KJ, et al. 16S rRNA gene-based analysis of fecal microbiota from preterm infants with and without necrotizing enterocolitis. Isme. 2009;3(8):944-954. doi: 10.1038/ismej.2009.37.16S
  28. Lemme-Dumit JM, Song Y, Lwin HW, et al. Altered Gut Microbiome and Fecal Immune Phenotype in Early Preterm Infants With Leaky Gut. Frontiers in Immunology. 2022;13(February):815046. doi: 10.3389/fimmu.2022.815046
  29. Torrazza RM, Ukhanova M, Wang X, et al. Intestinal microbial ecology and environmental factors affecting necrotizing enterocolitis. PLoS One. 2013;8(12):e83304. doi: 10.1371/journal.pone.0083304
  30. Liu XC, Du TT, Gao X, et al. Gut microbiota and short-chain fatty acids may be new biomarkers for predicting neonatal necrotizing enterocolitis: A pilot study. Frontiers in Microbiology. 2022;13(August):969656. doi: 10.3389/fmicb.2022.969656
  31. Warner PBB, Deych E, Zhou Y, et al. Gut bacteria dysbiosis and necrotising enterocolitis in very low birthweight infants: a prospective case-control study. Lancet. 2017;387(10031):1928-1936. doi: 10.1016/S0140-6736(16)00081-7.Gut
  32. Morrow AL, Lagomarcino AJ, Schibler KR, et al. Early microbial and metabolomic signatures predict later onset of necrotizing enterocolitis in preterm infants. Microbiome. 2013;1(1):13. doi: 10.1186/2049-2618-1-13
  33. Olm MR, Bhattacharya N, Crits-Christoph A, et al. Necrotizing enterocolitis is preceded by increased gut bacterial replication, Klebsiella, and fimbriae-encoding bacteria. Science Advances. 2019;5(12):eaax5727. doi: 10.1126/sciadv.aax5727
  34. Salzman NH, Underwood MA, Bevins CL. Paneth cells, defensins, and the commensal microbiota: A hypothesis on intimate interplay at the intestinal mucosa. Seminars in Immunology. 2007;19(2):70-83. doi: 10.1016/j.smim.2007.04.002
  35. Mih B, Good M. Impact of Toll-like receptor 4 signaling in necrotizing enterocolitis: The state of the science. Clinics in Perinatology. 2019;46(1):145-157. doi: 10.1177/0022146515594631.Marriage
  36. Healy DB, Ryan CA, Ross RP, Stanton C, Dempsey EM. Clinical implications of preterm infant gut microbiome development. Nature Microbiology. 2022;7(January):22-33. doi: 10.1038/s41564-021-01025-4 Clinical
  37. Nikitina IV, Donnikov AE, Krogh-Jensen OA, et al. Genetic predictors of necrotizing enterocolitis in neonates. Obstetrics and Gynecology. 2020;(12):150-158. doi: 10.18565/aig.2020.12.150-158
  38. Krogh-Jensen OA, Nikitina IV, Bragina ON, et al. Body surface cultures in preterm neonates on the first day of life: clinical usefulness. Obstetrics and Gynecology 2023;(8):108-123. doi: 10.18565/aig.2022.8.108-123
  39. Gupta S, Mortensen MS, Schjørring S, et al. Amplicon sequencing provides more accurate microbiome information in healthy children compared to culturing. Communications Biology. 2019;2:291. doi: 10.1038/s42003-019-0540-1
  40. Deurenberg RH, Bathoorn E, Chlebowicz MA, et al. Application of next generation sequencing in clinical microbiology and infection prevention. Journal of Biotechnology. 2017;243:16-24. doi: 10.1016/j.jbiotec.2016.12.022
  41. Woo PCY, Lau SKP, Teng JLL, Tse H, Yuen KY. Then and now: Use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clinical Microbiology and Infection. 2008;14(10):908-934. doi: 10.1111/j.1469-0691.2008.02070.x
  42. Sher Y, Olm MR, Raveh-Sadka T, et al. Combined analysis of microbial metagenomic and metatranscriptomic sequencing data to assess in situ physiological conditions in the premature infant gut. PLoS One. 2020;15(3):e0229537. doi: 10.1371/journal.pone.0229537
  43. Wishart DS, Oler E, Peters H, et al. MiMeDB: the Human Microbial Metabolome Database. Nucleic Acids Research. 2023;51(1 D):D611-D620. doi: 10.1093/nar/gkac868
  44. Liu M, Lu Y, Xue G, et al. Role of short-chain fatty acids in host physiology. Animal Models and Experimental Medicine. 2024;(June):641-652. doi: 10.1002/ame2.12464
  45. Takeuchi T, Nakanishi Y, Ohno H. Microbial Metabolites and Gut Immunology. Annual review of immunology. 2024;42(1):153-178. doi: 10.1146/annurev-immunol-090222-102035
  46. Martin-Gallausiaux C, Marinelli L, Blottière HM, Larraufie P, Lapaque N. SCFA: Mechanisms and functional importance in the gut. Proceedings of the Nutrition Society. 2021;80(1):37-49. doi: 10.1017/S0029665120006916
  47. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research. 2013;54(9):2325-2340. doi: 10.1194/jlr.R036012
  48. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7(3):189-200. doi: 10.1080/19490976.2015.1134082
  49. Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. The Role of Short-Chain Fatty Acids in Health and Disease. In: Advances in Immunology. Vol 121. 1st ed. Elsevier Inc.; 2014:91-119. doi: 10.1016/B978-0-12-800100-4.00003-9
  50. Barcenilla A, Pryde SE, Martin JC, et al. Phylogenetic relationships of butyrate-producing bacteria from the human gut. Applied and Environmental Microbiology. 2000;66(4):1654-1661. doi: 10.1128/AEM.66.4.1654-1661.2000
  51. Louis P, Young P, Holtrop G, Flint HJ. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environmental Microbiology. 2010;12(2):304-314. doi: 10.1111/j.1462-2920.2009.02066.x
  52. Turroni F, Milani C, Duranti S, Mahony J, van Sinderen D, Ventura M. Glycan Utilization and Cross-Feeding Activities by Bifidobacteria. Trends in Microbiology. 2018;26(4):339-350. doi: 10.1016/j.tim.2017.10.001
  53. Liu L, Fu C, Li F. Acetate affects the process of lipid metabolism in rabbit liver, skeletal muscle and adipose tissue. Animals. 2019;9(10):799. doi: 10.3390/ani9100799
  54. Ma J, Liu Z, Gao X, et al. Gut microbiota remodeling improves natural aging-related disorders through Akkermansia muciniphila and its derived acetic acid. Pharmacological Research. 2023;189(February):106687. doi: 10.1016/j.phrs.2023.106687
  55. Langfeld LQ, Du K, Bereswill S, Heimesaat MM. A review of the antimicrobial and immune-modulatory properties of the gut microbiota-derived short chain fatty acid propionate - What is new? European Journal of Microbiology and Immunology. 2021;11(2):50-56. doi: 10.1556/1886.2021.00005
  56. Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L. Bifidobacteria and butyrate-producing colon bacteria: Importance and strategies for their stimulation in the human gut. Frontiers in Microbiology. 2016;7(JUN):979. doi: 10.3389/fmicb.2016.00979
  57. Liu J, Zhu H, Li B, et al. Beneficial effects of butyrate in intestinal injury. Journal of Pediatric Surgery. 2020;55(6):1088-1093. doi: 10.1016/j.jpedsurg.2020.02.036
  58. Liu P, Wang Y, Yang G, et al. The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis. Pharmacological Research. 2021;165(September 2020):105420. doi: 10.1016/j.phrs.2021.105420
  59. Yao L, Davidson EA, Shaikh MW, Forsyth CB, Prenni JE, Broeckling CD. Quantitative analysis of short-chain fatty acids in human plasma and serum by GC-MS. Analytical and Bioanalytical Chemistry. 2022;414(15):4391-4399. doi: 10.1007/s00216-021-03785-8
  60. Saha S, Day-Walsh P, Shehata E, Kroon PA. Development and validation of a lc-ms/ms technique for the analysis of short chain fatty acids in tissues and biological fluids without derivatisation using isotope labelled internal standards. Molecules. 2021;26(21):6444. doi: 10.3390/molecules26216444
  61. Garcia A, Olmo B, Lopez-Gonzalvez A, Cornejo L, Rupérez FJ, Barbas C. Capillary electrophoresis for short chain organic acids in faeces. Reference values in a Mediterranean elderly population. Journal of Pharmaceutical and Biomedical Analysis. 2008;46(2):356-361. doi: 10.1016/j.jpba.2007.10.026
  62. Cai J, Zhang J, Tian Y, et al. Orthogonal Comparison of GC−MS and 1 H NMR Spectroscopy for Short Chain Fatty Acid Quantitation. Analitycal Chemistry. 2017;89(15):7900-7906. doi: 10.1002/hep.30150.Ductular
  63. Zheng J, Zheng SJ, Cai WJ, Yu L, Yuan BF, Feng YQ. Stable isotope labeling combined with liquid chromatography-tandem mass spectrometry for comprehensive analysis of short-chain fatty acids. Analytica Chimica Acta. 2019;1070:51-59. doi: 10.1016/j.aca.2019.04.021
  64. Hoving LR, Heijink M, van Harmelen V, van Dijk KW, Giera M. GC-MS analysis of short-chain fatty acids in feces, cecum content, and blood samples. Methods in Molecular Biology. 2018;1730:247-256. doi: 10.1007/978-1-4939-7592-1_17
  65. Dei Cas M, Paroni R, Saccardo A, et al. A straightforward LC-MS/MS analysis to study serum profile of short and medium chain fatty acids. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 2020;1154:1-12. doi: 10.1016/j.jchromb.2020.121982
  66. Trivedi N, Erickson HE, Bala V, Chhonker YS, Murry DJ. A Concise Review of Liquid Chromatography-Mass Spectrometry-Based Quantification Methods for Short Chain Fatty Acids as Endogenous Biomarkers. International Journal of Molecular Sciences. 2022;23(21):13486. doi: 10.3390/ijms232113486
  67. Primec M, Mičetić-Turk D, Langerholc T. Analysis of short-chain fatty acids in human feces: A scoping review. Analytical Biochemistry. 2017;526:9-21. doi: 10.1016/j.ab.2017.03.007
  68. Tumanov S, Bulusu V, Gottlieb E, Kamphorst JJ. A rapid method for quantifying free and bound acetate based on alkylation and GC-MS analysis. Cancer & Metabolism. 2016;4(1):17. doi: 10.1186/s40170-016-0157-5
  69. Kim KS, Lee Y, Chae W, Cho JY. An Improved Method to Quantify Short-Chain Fatty Acids in Biological Samples Using Gas Chromatography–Mass Spectrometry. Metabolites. 2022;12(6):4-15. doi: 10.3390/metabo12060525
  70. Zhang C, Tang P, Xu H, Weng Y, Tang Q, Zhao H. Analysis of Short-Chain Fatty Acids in Fecal Samples by Headspace-Gas Chromatography. Chromatographia. 2018;81(9):1317-1323. doi: 10.1007/s10337-018-3572-7
  71. Kukaev E, Kirillova E, Tokareva A, et al. Impact of Gut Microbiota and SCFAs in the Pathogenesis of PCOS and the Effect of Metformin Therapy. International Journal of Molecular Sciences. 2024;25(19):10636. doi: 10.3390/ijms251910636
  72. Luu M, Visekruna A. Short-chain fatty acids: Bacterial messengers modulating the immunometabolism of T cells. European Journal of Immunology. 2019;49(6):842-848. doi: 10.1002/eji.201848009
  73. Moffett JR, Puthillathu N, Vengilote R, Jaworski DM, Namboodiri AM. Acetate Revisited: A Key Biomolecule at the Nexus of Metabolism, Epigenetics and Oncogenesis—Part 1: Acetyl-CoA, Acetogenesis and Acyl-CoA Short-Chain Synthetases. Frontiers in Physiology. 2020;11(November):580167. doi: 10.3389/fphys.2020.580167
  74. Donohoe DR, Collins LB, Wali A, Bigler R, Sun W, Bultman SJ. The Warburg Effect Dictates the Mechanism of Butyrate Mediated Histone Acetylation and Cell Proliferation. Molecular Cell. 2012;48(4):611-626. doi: 10.1016/j.molcel.2012.08.033.The
  75. Baldassarre ME, Di Mauro A, Capozza M, et al. Dysbiosis and prematurity: Is there a role for probiotics? Nutrients. 2019;11(6):1273. doi: 10.3390/nu11061273
  76. Zhao J, Hu J, Ma X. Sodium caprylate improves intestinal mucosal barrier function and antioxidant capacity by altering gut microbial metabolism. Food and Function. 2021;12(20):9750-9762. doi: 10.1039/d1fo01975a
  77. Levy M, Thaiss CA, Zeevi D, et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell. 2015;163(6):1428-1443. doi: 10.1002/hep.30150.Ductular
  78. Tian P, Yang W, Guo X, et al. Early life gut microbiota sustains liver-resident natural killer cells maturation via the butyrate-IL-18 axis. Nature Communications. 2023;14(1):1710. doi: 10.1038/s41467-023-37419-7
  79. Beisner J, Filipe Rosa L, Kaden-Volynets V, Stolzer I, Günther C, Bischoff SC. Prebiotic Inulin and Sodium Butyrate Attenuate Obesity-Induced Intestinal Barrier Dysfunction by Induction of Antimicrobial Peptides. Frontiers in Immunology. 2021;12(June):678360. doi: 10.3389/fimmu.2021.678360
  80. van der Hee B, Wells JM. Microbial Regulation of Host Physiology by Short-chain Fatty Acids. Trends in Microbiology. 2021;29(8):700-712. doi: 10.1016/j.tim.2021.02.001
  81. Schulthess J, Pandey S, Capitani M, et al. The Short Chain Fatty Acid Butyrate Imprints an Antimicrobial Program in Macrophages. Immunity. 2019;50(2):432-445.e7. doi: 10.1016/j.immuni.2018.12.018
  82. Maslowski KM, Vieira AT, Ng A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461(7268):1282-1286. doi: 10.1038/nature08530
  83. Thomas SP, Denu JM. Short-chain fatty acids activate acetyltransferase p300. eLife. 2021;10:e72171. doi: 10.7554/eLife.72171
  84. Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446-450. doi: 10.1038/nature12721
  85. Sun M, Wu W, Chen L, et al. Microbiota-derived short-chain fatty acids promote Th1 cell IL-10 production to maintain intestinal homeostasis. Nature Communications. 2018;9(1):3555. doi: 10.1038/s41467-018-05901-2
  86. Kim M, Qie Y, Park J, Kim CH. Gut Microbial Metabolites Fuel Host Antibody Responses. Cell Host and Microbe. 2016;20(2):202-214. doi: 10.1016/j.chom.2016.07.001
  87. Kumar M, Singh P, Murugesan S, et al. Microbiome as an Immunological Modifier. Methods in Molecular Biology. 2020;2055(1):595-638. doi: 10.1007/978-1-4939-9773-2
  88. Sorbara MT, Dubin K, Littmann ER, et al. Inhibiting antibiotic-resistant Enterobacteriaceae by microbiota-mediated intracellular acidification. Journal of Experimental Medicine. 2019;216(1):84-98. doi: 10.1084/jem.20181639
  89. Byndloss MX, Olsan EE, Rivera-Chávez F, et al. Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion. Science. 2017;357(6351):570-575. doi: 10.1126/science.aam9949
  90. Fundora JB, Guha P, Shores DR, Pammi M, Maheshwari A. Intestinal dysbiosis and necrotizing enterocolitis: assessment for causality using Bradford Hill criteria. Pediatric Research. 2020;87(2):235-248. doi: 10.1038/s41390-019-0482-9
  91. Jilling T, Simon D, Lu J, et al. The Roles of Bacteria and TLR4 in Rat and Murine Models of Necrotizing Enterocolitis. Journal of Immunology. 2006;177(5):3273-3282. doi: 10.4049/jimmunol.177.5.3273
  92. Waligora-Dupriet AJ, Dugay A, Auzeil N, Huerre M, Butel MJ. Evidence for clostridial implication in necrotizing enterocolitis through bacterial fermentation in a gnotobiotic quail model. Pediatric Research. 2005;58(4):629-635. doi: 10.1203/01.PDR.0000180538.13142.84
  93. Alsharairi NA. Therapeutic Potential of Gut Microbiota and Its Metabolite Short-Chain Fatty Acids in Neonatal Necrotizing Enterocolitis. Life. 2023;13(2):561. doi: 10.3390/life13020561
  94. Athalye-Jape G, Esvaran M, Patole S, et al. Effect of single versus multistrain probiotic in extremely preterm infants: A randomised trial. BMJ Open Gastroenterology. 2022;9(1):e000811. doi: 10.1136/bmjgast-2021-000811
  95. Neumann CJ, Mahnert A, Kumpitsch C, et al. Clinical NEC prevention practices drive different microbiome profiles and functional responses in the preterm intestine. Nature Communications. 2023;14(1):1349. doi: 10.1038/s41467-023-36825-1
  96. Frau A, Lett L, Slater R, et al. The stool volatile metabolome of pre-term babies. Molecules. 2021;26(11):3341. doi: 10.3390/molecules26113341
  97. Wang C, Shoji H, Sato H, et al. Effects of oral administration of Bifidobacterium breve on fecal lactic acid and short-chain fatty acids in low birth weight infants. Journal of Pediatric Gastroenterology and Nutrition. 2007;44(2):252-257. doi: 10.1097/01.mpg.0000252184.89922.5f
  98. Xiong J, Liao XS, Yin T, Liu XC, Bao L, Li LQ. Alterations of the gut microbiota and short chain fatty acids in necrotizing enterocolitis and food protein-induced allergic protocolitis infants: A prospective cohort study. Frontiers in Cellular and Infection Microbiology. 2022;12(November):1030588. doi: 10.3389/fcimb.2022.1030588
  99. Huang H, Peng Q, Zhang Y, et al. Abnormalities in microbial composition and function in infants with necrotizing enterocolitis: A single-center observational study. Frontiers in Pediatrics. 2022;10(October):963345. doi: 10.3389/fped.2022.963345
  100. Casaburi G, Wei J, Kazi S, et al. Metabolic model of necrotizing enterocolitis in the premature newborn gut resulting from enteric dysbiosis. Frontiers in Pediatrics. 2022;10(August):893059. doi: 10.3389/fped.2022.893059
  101. Pourcyrous M, Nolan VG, Goodwin A, Davis SL, Buddington RK. Fecal short-chain fatty acids of very-low-birth-weight preterm infants fed expressed breast milk or formula. Journal of Pediatric Gastroenterology and Nutrition. 2014;59(6):725-731. doi: 10.1097/MPG.0000000000000515
  102. Cifuentes MP, Chapman JA, Stewart CJ. Gut microbiome derived short chain fatty acids: Promising strategies in necrotising enterocolitis. Current Research in Microbial Sciences. 2024;6(January):100219. doi: 10.1016/j.crmicr.2024.100219
  103. Frank DN, St. Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(34):13780-13785. doi: 10.1073/pnas.0706625104
  104. Sokol H, Seksik P, Furet JP, et al. Low counts of faecalibacterium prausnitzii in colitis microbiota. Inflammatory Bowel Diseases. 2009;15(8):1183-1189. doi: 10.1002/ibd.20903
  105. Waligora-Dupriet AJ, Dugay A, Auzeil N, et al. Short-chain fatty acids and polyamines in the pathogenesis of necrotizing enterocolitis: Kinetics aspects in gnotobiotic quails. Anaerobe. 2009;15(4):138-144. doi: 10.1016/j.anaerobe.2009.02.001
  106. Lin J, Nafday SM, Chauvin SN, et al. Variable effects of short chain fatty acids and lactic acid in inducing intestinal mucosal injury in newborn rats. Journal of Pediatric Gastroenterology and Nutrition. 2002;35(4):545-550. doi: 10.1097/00005176-200210000-00016
  107. Nafday SM, Chen W, Peng L, Babyatsky MW, Holzman IR, Lin J. Short-chain fatty acids induce colonic mucosal injury in rats with various postnatal ages. Pediatric Research. 2005;57(2):201-204. doi: 10.1203/01.PDR.0000150721.83224.89
  108. Thymann T, Møller HK, Stoll B, et al. Carbohydrate maldigestion induces necrotizing enterocolitis in preterm pigs. American Journal of Physiology - Gastrointestinal and Liver Physiology. 2009;297(6):1115-1125. doi: 10.1152/ajpgi.00261.2009
  109. Kien CL. Digestion, absorption, and fermentation of carbohydrates in the newborn. Clinics in Perinatology. 1996;23(2):211-228. doi: 10.1016/s0095-5108(18)30239-2
  110. Peng L, He Z, Chen W, Holzman IR, Lin J. Effects of butyrate on intestinal barrier function in a caco-2 cell monolayer model of intestinal barrier. Pediatric Research. 2007;61(1):37-41. doi: 10.1203/01.pdr.0000250014.92242.f3
  111. Vieira ELM, Leonel AJ, Sad AP, et al. Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis. Journal of Nutritional Biochemistry. 2012;23(5):430-436. doi: 10.1016/j.jnutbio.2011.01.007

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Кукаев Е.Н., Токарева А.О., Крог-Йенсен О.А., Лёнюшкина А.А., Стародубцева Н.Л., 2025

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».