The potential of the peptide drug Semax and Its derivative for correcting pathological impairments in the animal model of Alzheimer’s disease

Cover Page

Cite item

Abstract

Alzheimer’s disease, first described over a century ago, is currently among the most common neurodegenerative diseases whose significance is increasingly growing with the aging of populations. Throughout the entire period of its study, no remedies have been found that would be effective in treating – or at least significantly slowing – the pathological process, while being sufficiently safe. In this regard, significant attention is paid to the development and application of natural peptide drugs lacking side effects. The present study assessed the effect of the known neuroprotective peptide Semax and its derivative on the behavioral characteristics and development of amyloidosis in transgenic APPswe/PS1dE9/Blg mice acting as a model of Alzheimer’s disease. The open field, novel object recognition, and Barnes maze tests demonstrated that both Semax and its derivative improved cognitive functions in mice. Histological examination showed that these peptides reduced the number of amyloid inclusions in the cortex and hippocampus of the animals’ brains. These findings demonstrate the high potential of Semax and its derivatives when used to develop therapeutic and corrective strategies for Alzheimer’s disease.

About the authors

Alexandra I. Radchenko

Belgorod State National Research University

Email: sandrinkaradchenko@gmail.com
Russian Federation, Belgorod, 308015

Elena V. Kuzubova

Belgorod State National Research University

Email: 1015artek1015@mail.com
Russian Federation, Belgorod, 308015

Alina A. Apostol

Belgorod State National Research University

Email: alinakum835@gmail.com
Russian Federation, Belgorod, 308015

Vladimir A. Mitkevich

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: mitkevich@gmail.com
Russian Federation, Moscow, 119991

Liudmila A. Andreeva

National Research Center “Kurchatov Institute”

Email: andr-la.img@yandex.ru
Russian Federation, Moscow, 123182

Svetlana A. Limborskaya

National Research Center “Kurchatov Institute”

Email: limbor.img@yandex.ru
Russian Federation, Moscow, 123182

Yu. V. Stepenko

Belgorod State National Research University

Email: stepenko@bsu.edu.ru
Russian Federation, Belgorod, 308015

Veronika S. Shmigerova

Belgorod State National Research University

Email: belyaeva_v@bsuedu.ru
Russian Federation, Belgorod, 308015

Alexei V. Solin

Belgorod State National Research University

Email: solin@bsuedu.ru
Russian Federation, Belgorod, 308015

Mikhail V. Korokin

Belgorod State National Research University

Email: mkorokin@mail.ru
Russian Federation, Belgorod, 308015

Mikhail V. Pokrovskii

Belgorod State National Research University

Email: pokrovskii@bsuedu.ru
Russian Federation, Belgorod, 308015

Nikolai F. Myasoedov

National Research Center “Kurchatov Institute”

Email: Myasoedov-NF.img@yandex.ru
Russian Federation, Moscow, 123182

Alexander A. Makarov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Author for correspondence.
Email: aamakarov@eimb.ru
Russian Federation, Moscow, 119991

References

  1. Scheltens P, Blennow K, Breteler MMB, et al. Alzheimer’s Disease. Lancet. 2016;388(10043):505-517. doi: 10.1016/S0140-6736(15)01124-1
  2. Kuhla A, Rühlmann C, Lindner T, et al. APPswe/PS1dE9 mice with cortical amyloid pathology show a reduced NAA/Cr ratio without apparent brain atrophy: A MRS and MRI study. NeuroImage Clin. 2017;15:581-586. doi: 10.1016/j.nicl.2017.06.009
  3. Konttinen H, Cabral-da-Silva MEC, Ohtonen S, et al. PSEN1ΔE9, APPswe, and APOE4 Confer Disparate Phenotypes in Human iPSC-Derived Microglia. Stem Cell Reports. 2019;13(4):669-683. doi: 10.1016/j.stemcr.2019.08.004
  4. Koroleva SV, Myasoedov NF. Semax As a Universal Drug for Therapy and Research. Biology Bulletin. 2018;45(6):589-600. doi: 10.1134/S1062359018060055
  5. Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K. Alzheimer’s disease drug development pipeline: 2019. Alzheimers Dement (N Y). 2019;5:272-293. doi: 10.1016/j.trci.2019.05.008
  6. Bairamova SP, Petelin DS, Akhapkin RV, et al. The endogenic neurosteroid system and its role in the pathogenesis and therapy of mental disorders. Res Results Pharmacol. 2023; 9(1):61-69. doi: 10.18413/rrpharmacology.9.10015
  7. Khan S, Barve KH, Kumar MS. Recent Advancements in Pathogenesis, Diagnostics and Treatment of Alzheimer’s Disease. Curr Neuropharmacol. 2020;18(11):1106-1125. doi: 10.2174/1570159X18666200528142429
  8. Stepenko YV, Shmigerova VS, Kostina DA, et al. Study of the neuroprotective properties of the heteroreceptor EPOR/CD131 agonist of peptide structure in tau-proteinopathy modeling. Res Results Pharmacol. 2024;10(2) 41-47. doi: 10.18413/rrpharmacology.10.492
  9. Platt B, Drever B, Koss D, et al. Abnormal cognition, sleep, EEG and brain metabolism in a novel knock-in Alzheimer mouse, PLB1. PLoS One. 2011;6(11):e27068. doi: 10.1371/journal.pone.0027068
  10. Lysikova EA, Kukharsky MS, Chaprov KD, et al. Behavioural impairments in mice of a novel FUS transgenic line recapitulate features of frontotemporal lobar degeneration. Genes Brain Behav. 2019;18(8):e12607. doi: 10.1111/gbb.12607
  11. Forest KH, Alfulaij N, Arora K, et al. Protection against β-amyloid neurotoxicity by a non-toxic endogenous N-terminal β-amyloid fragment and its active hexapeptide core sequence. J Neurochem. 2018;144(2):201-217. doi: 10.1111/jnc.14257
  12. Kozin SA, Barykin EP, Mitkevich VA, Makarov AA. Anti-amyloid therapy of Alzheimer’s disease: Current state and prospects. Biochemistry (Mosc). 2018;83(9):1057-1067. doi: 10.1134/S0006297918090079
  13. Istrate AN, Tsvetkov PO, Mantsyzov AB, et al. NMR solution structure of rat aβ(1-16): toward understanding the mechanism of rats’ resistance to Alzheimer’s disease. Biophys J. 2012;102(1):136-143. doi: 10.1016/j.bpj.2011.11.4006
  14. Cummings J, Fox N. Defining Disease Modifying Therapy for Alzheimer’s Disease. J Prev Alzheimers Dis. 2017;4(2):109-115. doi: 10.14283/jpad.2017.12
  15. Sengupta U, Nilson AN, Kayed R. The Role of Amyloid-β Oligomers in Toxicity, Propagation, and Immunotherapy. EBioMedicine. 2016;6:42-49. doi: 10.1016/j.ebiom.2016.03.035
  16. Lysikova EA, Kuzubova EV, Radchenko AI, et al. APPswe/PS1dE9/Blg Transgenic Mouse Line for Modeling Cerebral Amyloid Angiopathy in Alzheimer’s Disease. Mol Biol (Mosс). 2023;57(1):85-94. doi: 10.31857/S0026898423010081
  17. Ashmarin IP, Nezaviba’tko VN, Myasoedov NF, et al. A nootropic adrenocorticotropin analog 4-10-semax (15 years experience in its design and study). Zh Vyssh Nerv Deiat Im I P Pavlova. 1997;47(2):420-430
  18. Myasoedov NF, Grivennikov IA. Neuropeptides and their analogues in the regulation of the functions of the mammalian nervous system, including humans. From the synthesis and study of their mechanisms of action to the creation of new generation medicines. In: Problemy i perspektivy molekulyarnoi genetiki [Problems and prospects of molecular genetics]. Moscow: Nauka; 2004.2:195–236.
  19. Potaman VN, Antonova LV, Dubynin VA, et al. Entry of the synthetic ACTH(4–10) analogue into the rat brain following intravenous injection. Neurosci Lett. 1991;127(1):133-136. doi: 10.1016/0304-3940(91)90912-d
  20. Ponomareva-Stepnaia MA, Bakharev VD, Nezavibatko VN, Andreeva LA, Alfeeva LYu, Potaman VN. Sravnitelnye issledovaniia analogov AKTG(4–10) stimulatorov obucheniia i pamiati. Khimiko-farmatsevticheskii zhurnal. 1986;20(6):667–670.
  21. Levitskaya NG, Glazova NYu, Sebentsova EA, et al. Investigation of the Spectrum of Physiological Activities of the Heptapeptide Semax, an ACTH 4–10 Analogue. Neurochemical J. 2008;2(1–2):95-101. doi: 10.1134/S1819712408010182
  22. Levitskaya NG, Sebentsova EA, Glazova NYu, et al. Study on the neurotropic activity of the products of Semax enzymatic degradation. Dokl Biol Sci 2000;372:243-246
  23. Mjasoedov NF, Gavrilova SI, Kalyn JaB, et al, inventors; Federal Service for Intellectual Property, assignee. Agent and method for prevention and treatment of the patients with Alzheimer’s disease. Russian Federation patent RUS 2384343. March 20, 2010.
  24. Ilina АR, Popovich IG, Ryzhak GА, Khavinson VKh. Prospects for use of short peptides in pharmacotherapeutic correction of Alzheimer’s disease. Adv Geront. 2024:37(1-2):10-20. doi: 10.34922/AE.2024.37.1-2.001
  25. Ponomareva-Stepnaia MA, Nezavibatko VN, Antonova LV, et al. Analog ACTG(4–10) stimulator obucheniia prolongirovannogo deistviia. Khimiko-farmatsevticheskii zhurnal. 1984;18(7):790-795.
  26. Ryzhak GА, Ilina АR. Prospects of using peptide drugs for the prevention and treatment of Alzheimer’s disease. Problems of Geroscience. 2024;4:223-226. doi: 10.37586/2949-4745-4-2024-223-226
  27. Vyunova TV, Andreeva LA, Shevchenko KV, Myasoedov NF. An integrated approach to study the molecular aspects of regulatory peptides biological mechanism. J Labelled Comp Radiopharm. 2019;62(12):812-822. doi: 10.1002/jlcr.3785
  28. Kozin SA, Makarov AA. The convergence of Alzheimer’s disease pathogenesis concepts. Mol Biol (Mosk). 2019;53(6):1020-1028. doi: 10.1134/S0026898419060107
  29. Barykin EP, Garifulina AI, Kruykova EV, et al. Isomerization of Asp7 in Beta-Amyloid Enhances Inhibition of the alpha7 Nicotinic Receptor and Promotes Neurotoxicity. Cells. 2019;8(8):771-787. doi: 10.3390/cells8080771

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Radchenko A.I., Kuzubova E.V., Apostol A.A., Mitkevich V.A., Andreeva L.A., Limborskaya S.A., Stepenko Y.V., Shmigerova V.S., Solin A.V., Korokin M.V., Pokrovskii M.V., Myasoedov N.F., Makarov A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).