Dimephosphon radioprotective properties on the model of radiation injury in vivo

Cover Page

Cite item

Abstract

Radiation therapy is a commonly used cancer treatment modality. However, its application is limited because of its toxicity to healthy tissue. The search for effective radioprotective agents remains one of the key goals of radiation oncology and radiobiology. This study focuses on experimental modeling of radiation injury in animals and the investigation of Dimephosphon radioprotective properties, a drug exhibiting anti-acidotic, antitumor, and antioxidant activities. It was shown that 14-day administration of the drug at a dose of 750 mg/kg after single-dose (5 Gy) irradiation of CD-1 mice resulted in a local radioprotective effect, reducing the severity of the radiation-induced injury to the intestinal epithelium and splenic capsule. The results of metabolomic screening revealed that the levels of the key metabolites responsible for antioxidant properties such as alpha-tocopherol, nicotinamide riboside, N-carbamoyl-L-aspartate, and adenylosuccinate were significantly increased, indicating that the Dimephosphon drug provides enhanced antioxidant protection.

About the authors

Daria A. Kiseleva

N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences

Author for correspondence.
Email: dasha.halikova@mail.ru
ORCID iD: 0000-0002-3932-2491
Russian Federation, Novosibirsk, 630090

Maria A. Melchenko

N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences; Novosibirsk State University

Email: almariaand@gmail.com
Russian Federation, Novosibirsk, 630090; Novosibirsk, 630090

Olga I. Yarovaya

N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences; Novosibirsk State University

Email: oyar@rambler.ru
Russian Federation, Novosibirsk, 630090; Novosibirsk, 630090

Nikita V. Basov

N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences; Novosibirsk State University

Email: basov@nioch.nsc.ru
Russian Federation, Novosibirsk, 630090; Novosibirsk, 630090

Artem D. Rogachev

N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences; Novosibirsk State University

Email: rogachev@nioch.nsc.ru
Russian Federation, Novosibirsk, 630090; Novosibirsk, 630090

Andrey G. Pokrovsky

Novosibirsk State University

Email: a.pokrovskii@g.nsu.ru
Russian Federation, Novosibirsk, 630090

Nariman F. Salakhutdinov

N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences

Email: anvar@nioch.nsc.ru
Russian Federation, Novosibirsk, 630090

Tatiana G. Tolstikova

N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences

Email: tg_tolstikova@mail.ru
ORCID iD: 0000-0002-3750-2958
Russian Federation, Novosibirsk, 630090

References

  1. Kaprin AD, Starinsky VV, Shakhzadova AO. State of oncologic care for the Russian population in 2023. P.A. Hertsen MORI – branch of FSBI «NMMRC» of the Ministry of Health of the Russian Federation; 2024.
  2. Martin OA, Martin RF. Cancer Radiotherapy: Understanding the Price of Tumor Eradication. Front Cell Dev Biol. 2020;8:261. doi: 10.3389/fcell.2020.00261
  3. Velsher LZ, Kosmynin AA, Byakhov MYu, Duditskaya TK, Reshetov DN. Targeted Therapy: A New Approach for the Treatment of Locally Advanced Oropharyngeal Cancer. Acta Naturae. 2012;4(1):82–85. doi: 10.32607/20758251-2012-4-1-82-85
  4. Dale DC, Crawford J, Klippel Z, et al. A Systematic Literature Review of The Efficacy, Effectiveness, and Safety of Filgrastim. Support Care Cancer. 2018;26(1):7–20. doi: 10.1007/s00520-017-3854-x
  5. Lee M, Yee J, Kim JY, et al. Risk Factors for Neutropenia and Febrile Neutropenia Following Prophylactic Pegfilgrastim. Asia Pac J Clin Oncol. 2019;15(4):231–237. doi: 10.1111/ajco.13152
  6. Andreassen CN, Grau C, Lindegaard JC. Chemical Radioprotection: A Critical Review of Amifostine as a Cytoprotector in Radiotherapy. Semin Radiat Oncol. 2003;13(1):62–72. doi: 10.1053/srao.2003.50006
  7. Mun GI, Kim S, Choi E, Kim CS, Lee YS. Pharmacology of Natural Radioprotectors. Arch Pharm Res. 2018;41(11):1033–1050. doi: 10.1007/s12272-018-1083-6
  8. Raj S, Manchanda R, Bhandari M, Alam MS. Review on Natural Bioactive Products as Radioprotective Therapeutics: Present and Past Perspective. Curr Pharm Biotechnol. 2022;23(14):1721–1738. doi: 10.2174/1389201023666220110104645
  9. Scott BR, Lin Y, Saxton B, Chen W, Potter CA, Belinsky SA. Modeling Cell Survival Fraction and Other Dose-Response Relationships for Immunodeficient C.B-17 SCID Mice Exposed to 320-kV X Rays. Dose Response. 2021;19(2):15593258211019887. doi: 10.1177/15593258211019887
  10. Vizel AA, Vizel AO, Shchukina LI. Dimethyl oxobutylphosphonyl dimethylate (Dimephosphone): use in pulmonology and phthisiology. Pulmonologiya. 2013;3(3):40–44.
  11. Maksimov ML, Malykhina AI, Shikaleva AA. Time-tested pharmacotherapy: from mechanisms to clinical efficacy. RMJ. 2020;9:71–76.
  12. Studentsova IA, Danilov VI, Khafizyanova RH, et al. Results of Clinical Testing of Dimephosphon as a Vasoactive Agent That Normalizes the Functions of the Nervous System. Kazanskiy Meditsinskiy Zhurnal. 1995;76(5):214–218.
  13. Mironov VF, Buzykin BI, Garaev RS, et al. Dimephosphone analogs: a pharmacological aspect. Russ Chem Bull. 2014;63:2114–2125. doi: 10.1007/s11172-014-0708-2
  14. Poluektov MG, Podymova IG, Golubev VL. Possibilities of using the drug dimephosphone in neurology and neurosurgery. Doctor.Ru. 2015; 5–6(106–107):5–10.
  15. Gileva TG, Lukin AV, Nyushkin AA, Agachev AR, Studentsova IA, Vizel AO. Metrology of acute radiation reaction in patients with laryngeal cancer. Kazanskiy Meditsinskiy Zhurnal. 1994;75(5):389. doi: 10.17816/kazmj90685
  16. Li K, Naviaux JC, Monk JM, Wang L, Naviaux RK. Improved Dried Blood Spot-Based Metabolomics: A Targeted, Broad-Spectrum, Single-Injection Method. Metabolites. 2020;10(3):82. doi: 10.3390/metabo10030082
  17. Basov NV, Rogachev AD, Aleshkova MA, et al. Global LC-MS/MS Targeted Metabolomics Using a Combination Of HILIC and RP LC Separation Modes on an Organic Monolithic Column Based on 1-vinyl-1,2,4-triazole. Talanta. 2024;267:125168. doi: 10.1016/j.talanta.2023.125168
  18. Patrushev YuV, Sotnikova YuS, Sidel’nikov VN. A Monolithic Column with a Sorbent Based on 1-Vinyl-1,2,4-Triazole for Hydrophilic HPLC. Prot Met Phys Chem Surf. 2020;56:49–53. doi: 10.1134/S2070205119060248
  19. Yuan M, Breitkopf SB, Yang X, Asara JM. A Positive/Negative Ion-Switching, Targeted Mass Spectrometry-Based Metabolomics Platform for Bodily Fluids, Cells, and Fresh and Fixed Tissue. Nat Protoc. 2012;7(5):872–881. doi: 10.1038/nprot.2012.024
  20. Li K, Naviaux JC, Bright AT, Wang L, Naviaux RK. A robust, single-injection method for targeted, broad-spectrum plasma metabolomics. Metabolomics. 2017;13(10):122. doi: 10.1007/s11306-017-1264-1
  21. Tairbekov MG, Petrov VM. Medical-biological effects of ionizing radiation. Moscow: MEPhI. 2005.
  22. Macià I Garau M, Lucas Calduch A, López EC. Radiobiology of the Acute Radiation Syndrome. Rep Pract Oncol Radiother. 2011;16(4):123–130. doi: 10.1016/j.rpor.2011.06.001
  23. Horie K, Namiki K, Kinoshita K, et al. Acute Irradiation Causes a Long-Term Disturbance in the Heterogeneity and Gene Expression Profile of Medullary Thymic Epithelial Cells. Front Immunol. 2023;14:1186154. doi: 10.3389/fimmu.2023.1186154
  24. Tripathi AM, Khan S, Chaudhury NK. Radiomitigation by Melatonin in C57BL/6 Mice: Possible Implications as Adjuvant in Radiotherapy and Chemotherapy. In Vivo. 2022;36(3):1203–1221. doi: 10.21873/invivo.12820
  25. Tucker JM, Townsend DM. Alpha-tocopherol: Roles in Prevention and Therapy of Human Disease. Biomed Pharmacother. 2005;59(7):380–387. doi: 10.1016/j.biopha.2005.06.005
  26. Singh VK, Beattie LA, Seed TM. Vitamin E: Tocopherols and Tocotrienols as Potential Radiation Countermeasures. J Radiat Res. 2013;54(6):973–988. doi: 10.1093/jrr/rrt048
  27. Rybalka E, Kourakis S, Bonsett CA, Moghadaszadeh B, Beggs AH, Timpani CA. Adenylosuccinic Acid: An Orphan Drug with Untapped Potential. Pharmaceuticals (Basel). 2023;16(6):822. doi: 10.3390/ph16060822
  28. Zhou W, Yao Y, Scott AJ, et al. Purine Metabolism Regulates DNA Repair and Therapy Resistance in Glioblastoma. Nat Commun. 2020;11(1):3811. doi: 10.1038/s41467-020-17512-x
  29. Li W, Wang X, Dong Y, et al. Nicotinamide Riboside Intervention Alleviates Hematopoietic System Injury of Ionizing Radiation-Induced Premature Aging Mice. Aging Cell. 2023;22(11):e13976. doi: 10.1111/acel.13976
  30. Niño-Narvión J, Rojo-López MI, Martinez-Santos P, et al. NAD+ Precursors and Intestinal Inflammation: Therapeutic Insights Involving Gut Microbiota. Nutrients. 2023;15(13):2992. doi: 10.3390/nu15132992
  31. Cheema AK, Suman S, Kaur P, Singh R, Fornace AJ Jr, Datta K. Long-Term Differential Changes in Mouse Intestinal Metabolomics after γ and Heavy Ion Radiation Exposure. PLoS One. 2014;9(1):e87079. doi: 10.1371/journal.pone.0087079

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Kiseleva D.A., Melchenko M.A., Yarovaya O.I., Basov N.V., Rogachev A.D., Pokrovsky A.G., Salakhutdinov N.F., Tolstikova T.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).