Whole-genome sequencing uncovers metabolic and immune system variations in Propionibacterium freudenreichii isolates
- Авторлар: Antipenko I.D.1, Venedyukhina S.A.1, Sorokina N.P.2, Kucherenko I.V.2, Smirnova T.S.2, Rogov G.N.2, Shkurnikov M.Y.1
-
Мекемелер:
- HSE University
- All-Russian Research Institute of Butter and Cheese Making, Branch of the Gorbatov Federal Research Center for Food Systems
- Шығарылым: Том 17, № 4 (2025)
- Беттер: 72-82
- Бөлім: Research Articles
- URL: https://journals.rcsi.science/2075-8251/article/view/365061
- DOI: https://doi.org/10.32607/actanaturae.27764
- ID: 365061
Дәйексөз келтіру
Аннотация
Propionibacterium freudenreichii plays a crucial role in the production of Swiss-type cheeses; however, genomic variability among strains, which affects their technological traits, remains insufficiently explored. In this study, whole-genome sequencing and comparative analysis were performed on five industrial P. freudenreichii strains. Despite their overall high genomic similarity, the strains proved different in gas production and substrate metabolism. Phylogenetic analysis revealed a close relationship between strain FNCPS 828 and P. freudenreichii subsp. shermanii (z-score = 0.99948), with the latter being unable to reduce nitrates but being able to metabolize lactose. The narG gene encoding the nitrate reductase alpha subunit was detected in only one of the five analyzed strains ‒ FNCPS 828 ‒ and in 39% of previously described P. freudenreichii genomes, suggesting its potential as a marker of nitrate-reducing capability. Analysis of 112 genomes showed that the I‒G CRISPR‒Cas system was present in more than 90% of the strains, whereas the type I‒E system was found in approximately 25%. All the five study strains harbored the type I‒G system; strain FNCPS 3 additionally contained a complete type I‒E system with the highest number of CRISPR spacers, some of which matched previously published bacteriophage sequences. The most prevalent anti-phage defense systems included RM I, RM IV, AbiE, PD-T4-6, HEC-06, and ietAS. These findings highlight the genetic diversity of P. freudenreichii strains, which is of great importance in their industrial applications. The identification of narG as a potential marker of nitrate-reducing activity, along with detailed mapping of CRISPR‒Cas systems, boosts opportunities for the rational selection and engineering of starter cultures with tailored metabolic properties and increased resistance to bacteriophages.
Негізгі сөздер
Авторлар туралы
Ivan Antipenko
HSE University
Хат алмасуға жауапты Автор.
Email: iantipenko@hse.ru
ORCID iD: 0009-0002-1139-6162
Laboratory for Research on Molecular Mechanisms of Longevity, Department of Biology and Biotechnology
Ресей, Moscow, 101000Sophia Venedyukhina
HSE University
Email: inbox@sofia.vened.ru
ORCID iD: 0009-0002-0266-0566
Laboratory for Research on Molecular Mechanisms of Longevity, Department of Biology and Biotechnology
Ресей, Moscow, 101000Ninel Sorokina
All-Russian Research Institute of Butter and Cheese Making, Branch of the Gorbatov Federal Research Center for Food Systems
Email: n.sorokina@fncps.ru
ORCID iD: 0000-0002-1108-3695
Ресей, Uglich, 109316
Irina Kucherenko
All-Russian Research Institute of Butter and Cheese Making, Branch of the Gorbatov Federal Research Center for Food Systems
Email: i.kucherenko@fncps.ru
ORCID iD: 0000-0001-8251-992X
Ресей, Uglich, 109316
Tatiana Smirnova
All-Russian Research Institute of Butter and Cheese Making, Branch of the Gorbatov Federal Research Center for Food Systems
Email: t.smirnova@fncps.ru
Ресей, Uglich, 109316
Gregory Rogov
All-Russian Research Institute of Butter and Cheese Making, Branch of the Gorbatov Federal Research Center for Food Systems
Email: g.rogov@fncps.ru
Ресей, Uglich, 109316
Maxim Shkurnikov
HSE University
Email: mshkurnikov@hse.ru
Laboratory for Research on Molecular Mechanisms of Longevity, Department of Biology and Biotechnology
Ресей, Moscow, 101000Әдебиет тізімі
- de Rezende Rodovalho V, Rodrigues DLN, Jan G, Le Loir Y, de Azevedo VA, Guédon E. Propionibacterium freudenreichii: General characteristics and probiotic traits. Prebiotics and Probiotics-From Food to Health. IntechOpen; 2021. doi: 10.5772/intechopen.97560
- Turgay M, Falentin H, Irmler S, et al. Genomic rearrangements in the aspA-dcuA locus of Propionibacterium freudenreichii are associated with aspartase activity. Food Microbiol. 2022;106:104030. doi: 10.1016/j.fm.2022.104030
- Loux V, Mariadassou M, Almeida S, et al. Mutations and genomic islands can explain the strain dependency of sugar utilization in 21 strains of Propionibacterium freudenreichii. BMC Genomics. 2015;16(1):296. doi: 10.1186/s12864-015-1467-7
- Piwowarek K, Lipińska E, Hać-Szymańczuk E, Kieliszek M, Kot AM. Sequencing and analysis of the genome of Propionibacterium freudenreichii T82 strain: Importance for industry. Biomolecules. 2020;10(2):348. doi: 10.3390/biom10020348
- Coronas R, Zara G, Gallo A, et al. Propionibacteria as promising tools for the production of pro-bioactive scotta: A proof-of-concept study. Front Microbiol. 2023;14:1223741. doi: 10.3389/fmicb.2023.1223741
- Gautier M, Rouault A, Sommer P, Briandet R. Occurrence of Propionibacterium freudenreichii bacteriophages in Swiss cheese. Appl Environ Microbiol. 1995;61(7):2572-2576. doi: 10.1128/aem.61.7.2572-2576.1995
- Cheng L, Marinelli LJ, Grosset N, et al. Complete genomic sequences of Propionibacterium freudenreichii phages from Swiss cheese reveal greater diversity than Cutibacterium (formerly Propionibacterium) acnes phages. BMC Microbiol. 2018;18(1):19. doi: 10.1186/s12866-018-1159-y
- Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes de novo assembler. Curr Protoc Bioinformatics. 2020;70(1):e102. doi: 10.1002/cpbi.102
- Langdon WB. Performance of genetic programming optimised Bowtie2 on genome comparison and analytic testing (GCAT) benchmarks. BioData Min. 2015;8(1):1. doi: 10.1186/s13040-014-0034-0
- Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078-2079. doi: 10.1093/bioinformatics/btp352
- Walker BJ, Abeel T, Shea T, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9(11):e112963. doi: 10.1371/journal.pone.0112963
- Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29(8):1072-1075. doi: 10.1093/bioinformatics/btt086
- Seppey M, Manni M, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness. Methods Mol Biol. 2019;1962:227-245. doi: 10.1007/978-1-4939-9173-0_14
- Tatusova T, DiCuccio M, Badretdin A, et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016;44(14):6614-6624. doi: 10.1093/nar/gkw569
- Olson RD, Assaf R, Brettin T, et al. Introducing the Bacterial and Viral Bioinformatics Resource Center (BV-BRC): a resource combining PATRIC, IRD and ViPR. Nucleic Acids Res. 2023;51(D1):D678-D689. doi: 10.1093/nar/gkac1003
- Brettin T, Davis JJ, Disz T, et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep. 2015;5:8365. doi: 10.1038/srep08365
- Payne LJ, Meaden S, Mestre MR, et al. PADLOC: a web server for the identification of antiviral defence systems in microbial genomes. Nucleic Acids Res. 2022;50(W1):W541-W550. doi: 10.1093/nar/gkac400
- Couvin D, Bernheim A, Toffano-Nioche C, et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 2018;46(W1):W246-W251. doi: 10.1093/nar/gky425
- Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357-359. doi: 10.1038/nmeth.1923
- Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics. 2016;32(6):929-931. doi: 10.1093/bioinformatics/btv681
- Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol. 2016;66(2):1100-1103. doi: 10.1099/ijsem.0.000760
- Atasever M, Mazlum H. Biochemical Processes During Cheese Ripening. Vet Sci Pract. 2024;19(3):174-182. doi: 10.17094/vetsci.1609184
- Shu L, Wang Q, Jiang W, et al. The roles of diol dehydratase from pdu operon on glycerol catabolism in Klebsiella pneumoniae. Enzyme Microb Technol. 2022;157:110021. doi: 10.1016/j.enzmictec.2022.110021
- de Freitas R, Madec MN, Chuat V, et al. New insights about phenotypic heterogeneity within Propionibacterium freudenreichii argue against its division into subspecies. Dairy Sci Technol. 2015;95(4):465-477. doi: 10.1007/s13594-015-0229-2
- Lledó B, Martínez-Espinosa RM, Marhuenda-Egea FC, Bonete MJ. Respiratory nitrate reductase from haloarchaeon Haloferax mediterranei: biochemical and genetic analysis. Biochim Biophys Acta. 2004;1674(1):50-59. doi: 10.1016/j.bbagen.2004.05.007
- Maske BL, de Melo Pereira GV, da Silva Vale A, Marques Souza DS, De Dea Lindner J, Soccol CR. Viruses in fermented foods: Are they good or bad? Two sides of the same coin. Food Microbiol. 2021;98:103794. doi: 10.1016/j.fm.2021.103794
- Payne LJ, Hughes TCD, Fineran PC, Jackson SA. New antiviral defences are genetically embedded within prokaryotic immune systems. bioRxiv. Published online January 30, 2024. doi: 10.1101/2024.01.29.577857
- Gao L, Altae-Tran H, Böhning F, et al. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science. 2020;369(6507):1077-1084. doi: 10.1126/science.aba0372
- Makarova KS, Wolf YI, Iranzo J, et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2020;18(2):67-83. doi: 10.1038/s41579-019-0299-x
- Aburjaile FF, Rohmer M, Parrinello H, et al. Adaptation of Propionibacterium freudenreichii to long-term survival under gradual nutritional shortage. BMC Genomics. 2016;17(1):1007. doi: 10.1186/s12864-016-3367-x
- Kośmider A, Drożdżyńska A, Blaszka K, Leja K, Czaczyk K. Propionic acid production by Propionibacterium freudenreichii ssp. shermanii using crude glycerol and whey lactose industrial wastes. Pol J Environ Stud. 2010;19(6):1249-1253
- de Assis DA, Machado C, Matte C, Ayub MAZ. High cell density culture of dairy propionibacterium sp. and acidipropionibacterium sp.: A review for food industry applications. Food Bioproc Tech. 2022;15(4):734-749. doi: 10.1007/s11947-021-02748-2
- Dank A, Abee T, Smid EJ. Expanded metabolic diversity of Propionibacterium freudenreichii potentiates novel applications in food biotechnology. Curr Opin Food Sci. 2023;52:101048. doi: 10.1016/j.cofs.2023.101048
- Dalmasso M, Nicolas P, Falentin H, et al. Multilocus sequence typing of Propionibacterium freudenreichii. Int J Food Microbiol. 2011;145(1):113-120. doi: 10.1016/j.ijfoodmicro.2010.11.037
- Georjon H, Bernheim A. The highly diverse antiphage defence systems of bacteria. Nat Rev Microbiol. 2023;21(10):686-700. doi: 10.1038/s41579-023-00934-x
- Deptula P, Laine PK, Roberts RJ, et al. De novo assembly of genomes from long sequence reads reveals uncharted territories of Propionibacterium freudenreichii. BMC Genomics. 2017;18(1):790. doi: 10.1186/s12864-017-4165-9
- Fatkulin AA, Chuksina TA, Sorokina NP, et al. Comparative Analysis of Spacer Targets in CRISPR-Cas Systems of Starter Cultures. Acta Naturae. 2024;16(4):81-85. doi: 10.32607/actanaturae.27533
- Bücher C, Burtscher J, Domig KJ. Propionic acid bacteria in the food industry: An update on essential traits and detection methods. Compr Rev Food Sci Food Saf. 2021;20(5):4299-4323. doi: 10.1111/1541-4337.12804
Қосымша файлдар

