Long-term Intracerebroventricular Administration of Ouabain Causes Motor Impairments in C57Bl/6 Mice

封面

如何引用文章

详细

Introduction. Cardiac glycosides are natural ligands of Na+/K+-ATPase, which regulate its activity and signaling. Intracerebroventricular administration of ouabain has been previously shown to induce hyperlocomotion in C57Bl/6 mice via a decrease in the rate of dopamine reuptake from the synaptic cleft.

Materials and methods. This study involved forty C57BL/6 mice. 1.5 μL of 50 μM ouabain was administered daily into the left lateral cerebral ventricle over the course of 4 days. On day 5, open field, beam balance, and ladder rung walking tests were performed to assess the locomotor activity and motor impairments in the mice. We evaluated changes in the activation of signaling cascades, ratios of proapoptotic and antiapoptotic proteins, and the amount of α1 and α3 isoforms of the Na+/K+-ATPase α-subunit in brain tissue using Western blotting. Na+/K+-ATPase activity was evaluated in the crude synaptosomal fractions of the brain tissues.

Results. We observed hyperlocomotion and stereotypic behavior during the open field test 24 hours after the last injection of ouabain. On day 5, the completion time and the number of errors made in the beam balance and ladder rung walking tests increased in the mice that received ouabain. Akt kinase activity decreased in the striatum, whereas the ratio of proapoptotic and antiapoptotic proteins and the number of Na+/K+-ATPase α-subunits did not change. Na+/K+-ATPase activity increased in the striatum and decreased in the brainstem.

Conclusions. Long-term exposure to ouabain causes motor impairments mediated by changes in the activation of signaling cascades in dopaminergic neurons.

作者简介

Yulia Timoshina

Lomonosov Moscow State University; Research Center of Neurology

Email: july.timoschina@yandex.ru
ORCID iD: 0000-0002-0546-8767

Postgraduate Student, Department of Higher Nervous Activity, Faculty of Biology, Lomonosov Moscow State University; Junior Researcher, Laboratory of Experimental and Translational Neurochemistry, Brain Science Institute, Research Center of Neurology
 
 
 
俄罗斯联邦, Moscow; Moscow

Rogneda Kazanskaya

Saint Petersburg State University; Research Center of Neurology

Email: st059046@student.spbu.ru
ORCID iD: 0000-0002-2194-6749

Postgraduate Student, Faculty of Biology, Saint Petersburg State University; Research Laboratory Assistant, Laboratory of Experimental and Translational Neurochemistry, Brain Science Institute, Research Center of Neurology

俄罗斯联邦, St. Petersburg; Moscow

Vladislav Zavialov

Saint Petersburg State University

Email: vladislavletsgo@outlook.com
ORCID iD: 0009-0000-6576-3373

Graduate Student, Laboratory Assistant, Laboratory of Neurobiology and Molecular Pharmacology, Institute of Translational Biomedicine

俄罗斯联邦, St. Petersburg

Anna Volnova

Saint Petersburg State University

Email: a.volnova@spbu.ru
ORCID iD: 0000-0003-0724-887X

D. Sci. (Biol.), Senior Researcher, Department of General Physiology, Biolodical Department

俄罗斯联邦, St. Petersburg

Alexander Latanov

Lomonosov Moscow State University

Email: latanov@neurobiology.ru
ORCID iD: 0000-0003-2729-4013

D. Sci. (Biol.), Prof., Head, Department of Higher Nervous Activity, Faculty of Biology

俄罗斯联邦, Moscow

Tatiana Fedorova

Research Center of Neurology

Email: tnf51@bk.ru
ORCID iD: 0000-0002-0483-1640

D. Sci. (Biol.), Head, Laboratory of Experimental and Translational Neurochemistry, Brain Science Institute

俄罗斯联邦, Moscow

Raul Gainetdinov

Saint Petersburg State University

Email: gainetdinov.raul@gmail.com
ORCID iD: 0000-0003-2951-6038

Cand. Sci. (Med.), Head, Laboratory of Neurobiology and Molecular Pharmacology, Scientific Director, Clinic of High Medical Technologies named after N.I. Pirogov, Director, Institute of Translational Biomedicine

俄罗斯联邦, St. Petersburg

Alexander Lopachev

Saint Petersburg State University; Research Center of Neurology

编辑信件的主要联系方式.
Email: lopachev@neurology.ru
ORCID iD: 0000-0002-5688-3899

Cand. Sci. (Biol.), Researcher, Laboratory of Experimental and Translational Neurochemistry, Brain Science Institute, Research Center of Neurology; Researcher, Laboratory of Neurobiology and Molecular Pharmacology, Saint Petersburg State University

俄罗斯联邦, St. Petersburg; Moscow

参考

  1. Ogawa H., Shinoda T., Cornelius F., Toyoshima C. Crystal structure of the sodium-potassium pump (Na+,K+-ATPase) with bound potassium and ouabain. Proc. Natl. Acad. Sci. USA. 2009;106:13742–13747. doi: 10.1073/pnas.0907054106
  2. Лопачев А.В., Лопачева О.М., Никифорова К.А. и др. Сравнительное действие кардиотонических стероидов на внутриклеточные процессы в корковых нейронах крыс. Биохимия. 2018;83:140–151. Lopachev A.V., Lopacheva O.M., Nikiforova K.A. Comparative action of cardiotonic steroids on intracellular processes in rat cortical neurons. Biochemistry. 2018;83:140–151. doi: 10.1134/S0006297918020062
  3. Тверской А.М., Сидоренко С.В., Климанова Е.А. и др. Влияние уабаина на пролиферацию эндотелиальных клеток человека коррелирует с активностью Na+,K+-АТФазы и внутриклеточным соотношением Na+ и K+. Биохимия. 2016;81:876–883. Tverskoi A.M., Sidorenko S.V., Klimanova E.A. et al. Effects of ouabain on proliferation of human endothelial cells correlate with Na+,K+-ATPase activity and intracellular ratio of Na+ and K. Biochemistry. 2016;81:876–883. doi: 10.1134/S0006297916080083
  4. Song H., Karashima E., Hamlyn J.M., Blaustein M.P. Ouabain-digoxin antagonism in rat arteries and neurones. J. Physiol. 2014;592:941–969. doi: 10.1113/jphysicalol.2013.266866
  5. Lingrel J.B., Argüello J.M., Van Huysse J., Kuntzweiler T.A. Cation and cardiac glycoside binding sites of the Na,K-ATPase. Ann. N. Y. Acad. Sci. 1997;834:194–206. doi: 10.1111/j.1749-6632.1997.tb52251.x
  6. McGrail K.M., Phillips J.M., Sweadner K.J. Immunofluorescent localization of three Na,K-ATPase isozymes in the rat central nervous system: both neurons and glia can express more than one Na,K-ATPase. J. Neurosci. 1991;11:381–391. doi: 10.1523/JNEUROSCI.11-02-00381.1991
  7. Лопачев А.В., Лопачева О.М., Осипова Е.А. и др. Индуцированные уабаином изменения фосфорилирования MAP-киназы в первичной культуре клеток мозжечка крыс. Биохимическая функция клетки. 2016;34:367–377. Lopachev A.V., Lopacheva O.M., Osipova E.A. et al. Ouabain-induced changes in MAP kinase phosphorylation in primary culture of rat cerebellar cells. Cell Biochem. Funct. 2016;34: 367–377. doi: 10.1002/cbf.3199
  8. Антонов С.М., Кривой И.И., Драбкина Т.М. и др. Нейропротекторный эффект экспрессии уабаина и пептида Bcl-2 при гиперактивации NMDA-рецепторов в нейронах коры головного мозга крыс in vitro. Доклады биологических наук. 2009;426:207–209. Antonov S.M., Krivoi I.I., Drabkina T.M. doi: 10.1134/s0012496609030041
  9. Sibarov D.A., Bolshakov A.E., Abushik P.A. et al. Na+,K+-ATPase functionally interacts with the plasma membrane Na+,Ca2+ exchanger to prevent Ca2+ overload and neuronal apoptosis in excitotoxic stress. J. Pharmacol. Exp. Ther. 2012;343(3):596–607. doi: 10.1124/jpet.112.198341
  10. Kapelios C.J., Lund L.H., Benson L. et al. Digoxin use in contemporary heart failure with reduced ejection fraction: an analysis from the Swedish Heart Failure Registry. Eur. Heart J. Cardiovasc. Pharmacother. 2022;8:756–767. doi: 10.1093/ehjcvp/pvab079
  11. Bagrov A.Y., Shapiro J.I., Fedorova O.V. Endogenous cardiotonic steroids: physiology, pharmacology, and novel therapeutic targets. Pharmacol. Rev. 2009;61:9–38. doi: 10.1124/pr.108.000711
  12. el-Mallakh R.S., Hedges S., Casey D. Digoxin encephalopathy presenting as mood disturbance. J. Clin. Psychopharmacol. 1995;15:82–83. doi: 10.1097/00004714-199502000-00013
  13. Piemonti L., Monti P., Allavena P. et al. Glucocorticoids affect human dendritic cell differentiation and maturation. J. Immunol. 1999;162:6473–6481.
  14. el-Mallakh R.S., Harrison L.T., Li R.
  15. Valvassori S.S., Dal-Pont G.C., Resende W.R. et al. Validation of the animal model of bipolar disorder induced by Ouabain: face, construct and predictive perspectives. Transl. Psychiatry. 2019;9:158. doi: 10.1038/s41398-019-0494-6
  16. Lopachev A., Volnova A., Evdokimenko A. et al. Intracerebroventricular injection of ouabain causes mania-like behavior in mice through D2 receptor activation. Sci. Rep. 2019;9:15627. doi: 10.1038/s41598-019-52058-z
  17. Kurup R.K., Kurup P.A. Hypothalamic digoxin-mediated model for Parkinson’s disease. Int. J. Neurosci. 2003;113:515–536. doi: 10.1080/00207450390162263
  18. Sun Y., Dong Z., Khodabakhsh H.
  19. Lichtstein D., Ilani A., Rosen H. et al. Na , K -ATPase signaling and bipolar disorder. Int. J. Mol. Sci. 2018;19(8):2314. doi: 10.3390/ijms19082314
  20. Kulich S.M., Chu C.T. Sustained extracellular signal-regulated kinase activation by 6-hydroxydopamine: implications for Parkinson’s disease. J. Neurochem. 2001;77(4):1058–1066. doi: 10.1046/j.1471-4159.2001.00304.x
  21. Fu J.F., Klyuzhin I., McKenzie J. et al. Joint pattern analysis applied to PET DAT and VMAT2 imaging reveals new insights into Parkinson’s disease induced presynaptic alterations. Neuroimage Clin. 2019;23:101856. doi: 10.1016/j.nicl.2019.101856
  22. Gustafsson H., Nordström A., Nordström P. Depression and subsequent risk of Parkinson disease: A nationwide cohort study. Neurology. 2015;84:2422–2429. doi: 10.1212/WNL.0000000000001684
  23. Huang M.H., Cheng C.M., Huang K.L. et al. Bipolar disorder and risk of Parkinson disease: A nationwide longitudinal study. Neurology. 2019;92:e2735–e2742. doi: 10.1212/WNL.0000000000007649
  24. Faustino P.R., Duarte G.S., Chendo I. et al. Risk of developing Parkinson disease in bipolar disorder: a systematic review and meta-analysis. JAMA Neurol. 2020;77:192–198. doi: 10.1001/jamaneurol.2019.3446
  25. Fan H.C., Chang Y.K., Tsai J.D. et al. The association between Parkinson’s disease and attention-deficit hyperactivity disorder. Cell Transplant. 2020;29:963689720947416. doi: 10.1177/0963689720947416
  26. Mulvihill K.G. Presynaptic regulation of dopamine release: role of the DAT and VMAT2 transporters. Neurochem. Int. 2019;122:94–105. doi: 10.1016/j.neuint.2018.11.004
  27. Goldstein D.S., Sullivan P., Holmes C. et al. Determinants of buildup of the toxic dopamine metabolite DOPAL in Parkinson’s disease. J. Neurochem. 2013;126:591–603. doi: 10.1111/jnc.12345
  28. Sbodio J.I., Snyder S.H., Paul B.D. Redox mechanisms in neurodegeneration: from disease outcomes to therapeutic opportunities. Antioxid. Redox Signal. 2019;30:1450–1499. doi: 10.1089/ars.2017.7321
  29. Ng J., Zhen J., Meyer E. et al. Dopamine transporter deficiency syndrome: phenotypic spectrum from infancy to adulthood. Brain. 2014;137:1107–1119. doi: 10.1093/brain/awu022
  30. Jennings D., Siderowf A., Stern M. et al. Conversion to Parkinson disease in the PARS hyposmic and dopamine transporter-deficit prodromal cohort. JAMA Neurol. 2017;74:933–940. doi: 10.1001/jamaneurol.2017.0985
  31. Pregeljc D., Teodorescu-Perijoc D., Vianello R. et al. How important is the use of cocaine and amphetamines in the development of Parkinson disease? A computational study. Neurotox. Res. 2020;37:724–731. doi: 10.1007/s12640-019-00149-0
  32. Ferreira C., Almeida C., Tenreiro S., Quintas A. Neuroprotection or neurotoxicity of illicit drugs on Parkinson’s disease. Life. 2020;10(6):86. doi: 10.3390/life10060086
  33. Kazanskaya R.B., Lopachev A.V., Fedorova T.N. . A low-cost and customizable alternative for commercial implantable cannula for intracerebral administration in mice. HardwareX. 2020;8:e00120. doi:
  34. Beaulieu J.M., Gainetdinov R.R. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol. Rev. 2011;63:182–217. doi: 10.1124/pr.110.002642
  35. Akkuratov E.E., Lopacheva O.M., Kruusmägi M. et al. Functional interaction between Na/K-ATPase and NMDA receptor in cerebellar neurons. Mol. Neurobiol. 2015;52:1726–1734. doi: 10.1007/s12035-014-8975-3
  36. Metz G.A., Whishaw I.Q. The ladder rung walking task: a scoring system and its practical application. J. Vis. Exp. 2009;(28):1204. doi: 10.3791/1204
  37. Prasad E.M., Hung S.Y. Behavioral tests in neurotoxin-induced animal models of Parkinson’s disease. Antioxid. Redox Signal. 2020;9:1007. doi: 10.3390/antiox9101007
  38. Young J.W., Henry B.L., Geyer M.A. Predictive animal models of mania: hits, misses and future directions. Br. J. Pharmacol. 2011;164:1263–1284. doi: 10.1111/j.1476-5381.2011.01318.x
  39. Wang J., Velotta J.B., McDonough A.A., Farley R.A. All human Na+-K+-ATPase alpha-subunit isoforms have a similar affinity for cardiac glycosides. Am. J. Physiol. Cell Physiol. 2001;281:C1336–C1343. doi: 10.1152/ajpcell.2001.281.4.C1336
  40. Gable M.E., Ellis L., Fedorova O.V. . Comparison of digitalis sensitivities of Na
  41. Kulich S.M., Chu C.T. Sustained extracellular signal-regulated kinase activation by 6-hydroxydopamine: implications for Parkinson’s disease. J. Neurochem. 2001;77:1058–1066. doi: 10.1046/j.1471-4159.2001.00304.x
  42. Zhao M.G., Toyoda H., Lee Y.S. et al. Roles of NMDA NR2B subtype receptor in prefrontal long-term potentiation and contextual fear memory. Neuron. 2005;47:859–872. doi: 10.1016/j.neuron.2005.08.014
  43. Monaco S.A., Gulchina Y., Gao W.J. NR2B subunit in the prefrontal cortex: a double-edged sword for working memory function and psychiatric disorders. Neurosci. Biobehav. Rev. 2015;56:127–138. doi: 10.1016/j.neubiorev.2015.06.022

补充文件

附件文件
动作
1. JATS XML

版权所有 © Тимошина Ю., Казанская Р., Завьялов В., Вольнова А., Латанов А., Федорова Т., Гайнетдинов Р., Лопачев А., 2023

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可
##common.cookie##