Определение микроРНК при каротидном атеросклерозе: перспективы клинического применения

Обложка

Цитировать

Полный текст

Аннотация

Каротидный атеросклероз является значимой причиной ишемических цереброваскулярных заболеваний, однако возможности прецизионной оценки риска его развития и прогрессирования, несмотря на обилие предлагаемых маркеров, остаются ограниченными. В настоящей работе приводится обзор современных представлений о микроРНК в качестве биомаркеров атерогенеза на разных его этапах: эндотелиальная дисфункция, метаболизм холестерина/липидов, воспаление, оксидативный стресс, регуляция ангиогенеза, пролиферация и миграция гладкомышечных клеток сосудов. Для каждого из звеньев атерогенеза на основании данных литературы описаны наиболее значимые микроРНК, приведена их краткая характеристика. С помощью инструмента MIENTURNET визуализированы взаимодействия между микроРНК и валидированными таргетными генами. Предлагается и обосновывается набор микроРНК для дальнейших поисковых исследований каротидного атеросклероза.

Об авторах

Маринэ Мовсесовна Танашян

ФГБНУ «Научный центр неврологии»

Email: mtanashyan@neurology.ru
ORCID iD: 0000-0002-5883-8119

д.м.н., профессор, член-корреспондент РАН, заместитель директора по научной работе, руководитель 1-го неврологического отделения ФГБНУ НЦН

Россия, Москва

Антон Алексеевич Раскуражев

ФГБНУ «Научный центр неврологии»

Автор, ответственный за переписку.
Email: rasckey@live.com
ORCID iD: 0000-0003-0522-767X

к.м.н., врач-невролог, с.н.с. 1-го неврологического отделения ФГБНУ НЦН

Россия, Москва

Полина Игоревна Кузнецова

ФГБНУ «Научный центр неврологии»

Email: angioneurology0@gmail.com
ORCID iD: 0000-0002-4626-6520

к.м.н., врач-невролог, н.с. 1-го неврологического отделения ФГБНУ НЦН

Россия, Москва

Андрей Сергеевич Мазур

ФГБНУ «Научный центр неврологии»

Email: a1699466@yandex.ru
ORCID iD: 0000-0001-8960-721X

аспирант 1-го неврологического отделения ФГБНУ НЦН

Россия, Москва

Алла Анатольевна Шабалина

ФГБНУ «Научный центр неврологии»

Email: ashabalina@yandex.ru
ORCID iD: 0000-0001-9604-7775

д.м.н., в.н.с., рук. лаб. гемореологии, гемостаза и фармакокинетики (с клинической лабораторной диагностикой) ФГБНУ НЦН

Россия, Москва

Список литературы

  1. Mettananda K.C.D., Eshani M.D.P., Wettasinghe L.M. et al. Prevalence and correlates of carotid artery stenosis in a cohort of Sri Lankan ischaemic stroke patients. BMC Neurol. 2021; 21: 385. doi: 10.1186/s12883-021-02415-1
  2. Song P., Fang Z., Wang H. et al. Global and regional prevalence, burden, and risk factors for carotid atherosclerosis: a systematic review, meta-analysis, and modelling study. Lancet Glob. Health. 2020; 8(5): e721–e729. doi: 10.1016/S2214-109X(20)30117-0
  3. Танашян М.М., Лагода О.В., Раскуражев А.А. и др. Экстра- versus интракраниальный атеросклероз: две грани одной проблемы. Российский неврологический журнал. 2022; 27(3): 11–19. Tanashyan M.M., Lagoda O.V., Raskurazhev A.A. et al. Extra- versus intracranial atherosclerosis: two facets of the same problem. Russian Neurological Journal. 2022; 27(3): 11–19. (In Russ.) doi: 10.30629/2658-7947-2022-27-3-11-19
  4. Раскуражев А.А., Танашян М.М. Роль микроРНК в цереброваскулярной патологии. Анналы клинической и экспериментальной неврологии. 2019; 13(3): 41–46. Raskurazhev A.A., Tanashyan M.M. The role of micro-RNA in cerebrovascular disease. Annals of Clinical and Experimental Neurology. 2019; 13(3): 41–46. (In Russ.) doi: 10.25692/ACEN.2019.3.6
  5. Кучер А.Н., Назаренко М.С. Роль микро-РНК при атерогенезе. Кардиология. 2017; 57(9): 65–76. Kucher A.N., Nazarenko M.S. The role of microRNA in atherogenesis. Cardiology. 2017; 57(9): 65–76. (In Russ.) doi: 10.18087/cardio.2017.9.10022
  6. Badacz R., Przewłocki T., Legutko J. et al. microRNAs associated with carotid plaque development and vulnerability: the clinician’s perspective. Int. J. Mol. Sci. 2022; 23(24): 15645. doi: 10.3390/ijms232415645
  7. Раскуражев А.А., Шабалина А.А., Кузнецова П.И., Танашян М.М. МикроРНК как значимые биомаркеры атеросклеротической цереброваскулярной патологии. Анналы клинической и экспериментальной неврологии. 2022; 16(1): 5–13. Raskurazhev A.A., Shabalina A.A., Kuznetsova P.I., Tanashyan M.M. Micro- RNA as significant biomarkers of cerebrovascular atherosclerosis. Annals of Clinical and Experimental Neurology. 2022; 16(1): 5–13. (In Russ.) doi: 10.54101/ACEN.2022.1.1
  8. Raskurazhev A.A., Kuznetsova P.I., Shabalina A.A., Tanashyan M.M. MicroRNA and hemostasis profile of carotid atherosclerosis. Int. J. Mol. Sci. 2022: 23: 10974. doi: 10.3390/ijms231810974
  9. Licursi V., Conte F., Fiscon G., Paci P. MIENTURNET: an interactive web tool for microRNA-target enrichment and network-based analysis. BMC Bioinformatics. 2019; 20(1): 545. doi: 10.1186/s12859-019-3105-x
  10. Widlansky M.E., Gokce N., Keaney J.F. Jr, Vita J.A. The clinical implications of endothelial dysfunction. J. Am. Coll. Cardiol. 2003; 42(7): 1149–1160. doi: 10.1016/s0735-1097(03)00994-x
  11. Deng X., Chu X., Wang P. et al. MicroRNA-29a-3p reduces TNFα-induced endothelial dysfunction by targeting tumor necrosis factor receptor 1. Mol. Ther. Nucleic Acids. 2019; 18: 903–915. doi: 10.1016/j.omtn.2019.10.014
  12. Zhang Y, Wang L, Xu J, et al. Up-regulated miR-106b inhibits ox-LDL-induced endothelial cell apoptosis in atherosclerosis. Braz. J. Med. Biol. Res. 2020; 53(3): e8960. doi: 10.1590/1414-431X20198960
  13. Cheng H.S., Sivachandran N., Lau A. et al. MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways. EMBO Mol. Med. 2013; 5(7): 1017–1034. doi: 10.1002/emmm.201202318
  14. Wang C., Liu C., Shi J. et al. Nicotine exacerbates endothelial dysfunction and drives atherosclerosis via extracellular vesicle-miRNA. Cardiovasc. Res. 2022; 25:cvac140. doi: 10.1093/cvr/cvac140
  15. Kuo H.M., Lin C.Y., Lam H.C. et al. PTEN overexpression attenuates angiogenic processes of endothelial cells by blockade of endothelin-1/endothelin B receptor signaling. Atherosclerosis. 2012; 221(2): 341–349. doi: 10.1016/j.atherosclerosis.2010.08.067
  16. Moulton K.S., Li M., Strand K. et al. PTEN deficiency promotes pathological vascular remodeling of human coronary arteries. JCI Insight. 2018; 3(4): e97228. doi: 10.1172/jci.insight.97228
  17. Gao Y., Li G., Fan S. et al. Circ_0093887 upregulates CCND2 and SUCNR1 to inhibit the ox-LDL-induced endothelial dysfunction in atherosclerosis by functioning as a miR-876-3p sponge. Clin. Exp. Pharmacol. Physiol. 2021; 48(8): 1137–1149. doi: 10.1111/1440-1681.13504
  18. Feng J., Li A., Deng J. et al. miR-21 attenuates lipopolysaccharide-induced lipid accumulation and inflammatory response: potential role in cerebrovascular disease. Lipids Health Dis. 2014; 13: 27. doi: 10.1186/1476-511X-13-27
  19. Price N.L., Rotllan N., Canfrán-Duque A. et al. Genetic dissection of the impact of miR-33a and miR-33b during the progression of atherosclerosis. Cell Rep. 2017; 21(5): 1317–1330. doi: 10.1016/j.celrep.2017.10.023
  20. Tang X.E., Li H., Chen L.Y. et al. IL-8 negatively regulates ABCA1 expression and cholesterol efflux via upregulating miR-183 in THP-1 macrophage-derived foam cells. Cytokine. 2019; 122: 154385. doi: 10.1016/j.cyto.2018.04.028
  21. Fan M., Huang Y., Li K. et al. ox-LDL regulates proliferation and apoptosis in VSMCs by controlling the miR-183-5p/FOXO1. Genes Genomics. 2022; 44(6): 671–681. doi: 10.1007/s13258-022-01236-x
  22. Rafiei A., Ferns G.A., Ahmadi R. et al. Expression levels of miR-27a, miR-329, ABCA1, and ABCG1 genes in peripheral blood mononuclear cells and their correlation with serum levels of oxidative stress and hs-CRP in the patients with coronary artery disease. IUBMB Life. 2021; 73(1): 223–237. doi: 10.1002/iub.2421
  23. Li J., Li K., Chen X. Inflammation-regulatory microRNAs: Valuable targets for intracranial atherosclerosis. J. Neurosci. Res. 2019; 97(10): 1242–1252. doi: 10.1002/jnr.24487
  24. Pankratz F., Hohnloser C., Bemtgen X. et al. MicroRNA-100 suppresses chronic vascular inflammation by stimulation of endothelial autophagy. Circ. Res. 2018; 122(3): 417–432. doi: 10.1161/CIRCRESAHA.117.311428
  25. Yang K., He Y.S., Wang X.Q. et al. MiR-146a inhibits oxidized low-density lipoprotein-induced lipid accumulation and inflammatory response via targeting toll-like receptor 4. FEBS Lett. 2011; 585(6): 854–860. doi: 10.1016/j.febslet.2011.02.009
  26. Döring Y., Noels H., van der Vorst E.P.C. et al. Vascular CXCR4 limits atherosclerosis by maintaining arterial integrity: evidence from mouse and human studies. Circulation. 2017; 136(4): 388–403. doi: 10.1161/CIRCULATIONAHA.117.027646
  27. Magenta A., Greco S., Gaetano C., Martelli F. Oxidative stress and microRNAs in vascular diseases. Int. J. Mol. Sci. 2013; 14(9): 17319–17346. doi: 10.3390/ijms140917319
  28. Yang S., Mi X., Chen Y. et al. MicroRNA-216a induces endothelial senescence and inflammation via Smad3/IκBα pathway. J. Cell Mol. Med. 2018; 22(5): 2739–2749. doi: 10.1111/jcmm.13567
  29. Yang S., Chen Y., Mi X. et al. MicroRNA-216a promotes endothelial inflammation by smad7/IκBα pathway in atherosclerosis. Dis. Markers. 2020; 2020: 8864322. doi: 10.1155/2020/8864322
  30. van Ingen E., Foks A.C., Woudenberg T. et al. Inhibition of micro- RNA-494-3p activates Wnt signaling and reduces proinflammatory macrophage polarization in atherosclerosis. Mol. Ther. Nucleic Acids. 2021; 26: 1228–1239. doi: 10.1016/j.omtn.2021.10.027
  31. Zhu L., Wang Y., Qiao F. microRNA-223 and microRNA-126 are clinical indicators for predicting the plaque stability in carotid atherosclerosis patients. J. Hum. Hypertens. 2022. doi: 10.1038/s41371-022-00760-3
  32. Chen L., Zheng S.Y., Yang C.Q. et al. MiR-155-5p inhibits the proliferation and migration of VSMCs and HUVECs in atherosclerosis by targeting AKT1. Eur. Rev. Med. Pharmacol. Sci. 2019; 23(5): 2223–2233. doi: 10.26355/eurrev_201903_17270
  33. Xu W., Qian L., Yuan X., Lu Y. MicroRNA-223-3p inhibits oxidized low-density lipoprotein-mediated NLRP3 inflammasome activation via directly targeting NLRP3 and FOXO3. Clin. Hemorheol. Microcirc. 2022; 81(3): 241–253. doi: 10.3233/CH-211232
  34. Sun B., Shan Z., Sun G., Wang X. Micro-RNA-183-5p acts as a potential diagnostic biomarker for atherosclerosis and regulates the growth of vascular smooth muscle cell. J. Chin. Med. Assoc. 2021; 84(1): 33–37. doi: 10.1097/JCMA.0000000000000433
  35. Xu H., Cui Y., Liu X. et al. miR-1290 promotes IL-8-mediated vascular endothelial cell adhesion by targeting GSK-3β. Mol. Biol. Rep. 2022; 49(3): 1871–1882. doi: 10.1007/s11033-021-06998-3
  36. Sun B., Cao Q., Meng M., Wang X. MicroRNA-186-5p serves as a diagnostic biomarker in atherosclerosis and regulates vascular smooth muscle cell proliferation and migration. Cell Mol. Biol. Lett. 2020; 25: 27. doi: 10.1186/s11658-020-00220-1
  37. Shi Y., Li H., Gu J. et al. Wnt5a/Ror2 promotes vascular smooth muscle cells proliferation via activating PKC. Folia Histochem. Cytobiol. 2022; 60(3): 271–279. doi: 10.5603/FHC.a2022.0026
  38. Wang W., Ma F., Zhang H. MicroRNA-374 is a potential diagnostic biomarker for atherosclerosis and regulates the proliferation and migration of vascular smooth muscle cells. Cardiovasc. Diagn. Ther. 2020; 10(4): 687–694. doi: 10.21037/cdt-20-444
  39. Sun H., Wu S., Sun B. MicroRNA-532-5p protects against atherosclerosis through inhibiting vascular smooth muscle cell proliferation and migration. Cardiovasc. Diagn. Ther. 2020; 10(3): 481–489. doi: 10.21037/cdt-20-91

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. МикроРНК, ассоциированные с эндотелиальной дисфункцией (прямоугольники на белом фоне), и их таргеты (эллипсы на зелёном фоне).

Скачать (231KB)
3. Рис. 2. МикроРНК, ассоциированные с липидным метаболизмом (прямоугольники на белом фоне), и их таргеты (эллипсы на зелёном фоне).

Скачать (209KB)
4. Рис. 3. МикроРНК, ассоциированные с воспалением (прямоугольники на белом фоне), и их таргеты (эллипсы на зелёном фоне).

Скачать (185KB)
5. Рис. 4. МикроРНК, ассоциированные с регуляцией ангиогенеза, пролиферацией гладкомышечных клеток (прямоугольники на белом фоне), и их таргеты (эллипсы на зелёном фоне).

Скачать (214KB)

© Танашян М.М., Раскуражев А.А., Кузнецова П.И., Мазур А.С., Шабалина А.А., 2023

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах