Нейровоспаление как процесс вторичного повреждения при черепно-мозговой травме

Обложка

Цитировать

Полный текст

Аннотация

Черепно-мозговая травма (ЧМТ) является одной из основных причин инвалидизации трудоспособного населения. Энергия удара приводит к механическому повреждению тканей, после чего запускаются вторичные процессы повреждения, выражающиеся в нарушении медиаторного обмена, разрыве гематоэнцефалического барьера, инфильтрации кровью ткани головного мозга, повышенной продукции цитокинов и хемокинов и ряде других процессов. Особую роль отводят микроглии, которая активируется в ответ на удар и в начальные этапы после травмы «защищает» оставшуюся ткань от продуктов некроза и апоптоза. Микроглия после травмы быстро дифференцируется на провоспалительный фенотип М1, который начинает продуцировать цитотоксические для нейронов цитокины — фактор некроза опухоли-α, интерлейкины (ИЛ)-6 и ИЛ-1β, NO, запускающие процесс апоптоза, и фенотип М2, секретирующий ИЛ-4 и ИЛ-13, которые, как предполагают, уменьшают воспаление и улучшают восстановление тканей головного мозга. М2-ответ длится значительно меньше, чем М1, и нарастающая провоспалительная активация ведёт к дальнейшей гибели нейронов. Всё это негативно сказывается на когнитивном и физическом статусе пациентов, перенёсших ЧМТ. В обзоре рассмотрены основные биохимические процессы, которые происходят после ЧМТ, и возможные способы модуляции нейровоспалительного процесса.

Об авторах

Анна Евгеньевнна Карчевская

ФГБУН «Институт высшей нервной деятельности и нейрофизиологии РАН»; ФГАОУ ВО «Первый Московский государственный медицинский университет имени И.М. Сеченова» (Сеченовский Университет); ФГАУ «НМИЦ нейрохирургии им. академика Н.Н. Бурденко»

Автор, ответственный за переписку.
Email: ankar1998@yandex.ru
ORCID iD: 0000-0001-6647-0572

м.н.с. лаб. общей и клинической нейрофизиологии ФГБУН «Институт высшей нервной деятельности и нейрофизиологии РАН»; медицинский психолог ФГАУ «НМИЦ нейрохирургии им. академика Н.Н. Бурденко»; студентка ФГАОУ ВО «Первый Московский государственный медицинский университет имени И.М. Сеченова» (Сеченовский Университет)

Россия, Москва; Москва; Москва

Ольга Викторовна Паюшина

ФГАОУ ВО «Первый Московский государственный медицинский университет имени И.М. Сеченова» (Сеченовский Университет)

Email: payushina@mail.ru
ORCID iD: 0000-0001-8467-0623

д.б.н., доцент каф. гистологии, цитологии и эмбриологии ФГАОУ ВО «Первый Московский государственный медицинский университет имени И.М. Сеченова» (Сеченовский Университет)

Россия, Москва

Елена Васильевна Шарова

ФГБУН «Институт высшей нервной деятельности и нейрофизиологии РАН»

Email: ESharova@nsi.ru
ORCID iD: 0000-0003-4994-4187
SPIN-код: 5233-9615
Scopus Author ID: 7003870497

д.б.н., зав. лаб. общей и клинической нейрофизиологии ФГБУН «Институт высшей нервной деятельности и нейрофизиологии РАН»

Россия, Москва

Любовь Борисовна Окнина

ФГБУН «Институт высшей нервной деятельности и нейрофизиологии РАН»

Email: lyubov.oknina@ihna.ru
ORCID iD: 0000-0002-7398-1183
SPIN-код: 2614-8209
Scopus Author ID: 6602961277

д.б.н., с.н.с. лаб. общей и клинической нейрофизиологии ФГБУН «Институт высшей нервной деятельности и нейрофизиологии РАН»

Россия, Москва

Олег Юрьевич Титов

ФГАУ «НМИЦ нейрохирургии им. академика Н.Н. Бурденко»

Email: neurolegtitov@gmail.com
ORCID iD: 0000-0001-6570-7777

аспирант ФГАУ «НМИЦ нейрохирургии им. академика Н.Н. Бурденко»

Россия, Москва

Список литературы

  1. Потапов А.А., Лихтерман Л.Б., Кравчук А.Д. и др. Современные подходы к изучению и лечению черепно-мозговой травмы. Анналы клинической и экспериментальной неврологии. 2010; 4(1): 4–12. Potapov A.A., Lihterman L.B., Kravchuk A.D. et al. Modern approaches to the study and treatment of traumatic brain injury. Annals of Clinical and Experimental Neurology. 2010; 4(1): 4–12. (In Russ.) doi: 10.17816/psaic354
  2. Гусев Е.И., Коновалов А.Н., Скворцова В.И. Неврология и нейрохирургия. M.; 2018. Gusev E.I., Konovalov A.N., Skvorcova V.I. Neurology and Neurosurgery. Moscow; 2018. (In Russ.)
  3. Лихтерман Л.Б. Классификация черепно-мозговой травмы. Часть II. Современные принципы классификации ЧМТ. Судебная медицина. 2015; 1(3): 37–48. Lihterman L.B. Classification of traumatic brain injury. Part II. Modern principles of TBI classification. Forensic Medicine. 2015; 1(3): 37–48. (In Russ.) doi: 10.19048/2411-8729-2015-1-3-37-48
  4. Pervez M., Kitagawa R.S., Chang T.R. Definition of traumatic brain injury, neurosurgery, trauma orthopedics, neuroimaging, psychology, and psychiatry in mild traumatic brain injury. Neuroimag. Clin. N. Am. 2018; 28(1): 1–13. doi: 10.1016/j.nic.2017.09.010
  5. Farooqui A.A. Neurochemical aspects of traumatic brain injury. В: neurochemical aspects of neurotraumatic and neurodegenerative diseases. NY: 183–218. doi: 10.1007/978-1-4419-6652-0
  6. Kim J.Y., Park J., Chang J.Y. et al. Inflammation after ischemic stroke: the role of leukocytes and glial cells. Exp. Neurobiol. 2016; 25(5): 241–251. doi: 10.5607/en.2016.25.5.241
  7. Loane D.J., Kumar A. Microglia in the TBI brain: the good, the bad, and the dysregulated. Exp. Neurol. 2016; 275: 316–327. doi: 10.1016/j.expneurol.2015.08.018
  8. Яковлев А.А., Лыжин А.А., Александрова О.П. и др. Выработка долговременной устойчивости нейронов к экзайтотоксическому повреждению с помощью депривации трофических факторов. Биомедицинская химия. 2016; 62(6): 656–663. Yakovlev A.A., Lyzhin A.A., Aleksandrova O.P. et al. Trophic factors deprivation induces long-term protection of neurons against excitotoxic damage. Biomedical Chemistry. 2016; 62(6): 656–663. (In Russ.) doi: 10.18097/PBMC20166206656
  9. Blennow K., Hardy J., Zetterberg H. The neuropathology and neurobiology of traumatic brain injury. Neuron. 2012; 76(5): 886–899. doi: 10.1016/j.neuron.2012.11.021
  10. Chitturi J., Li Y., Santhakumar V., Kannurpatti S.S. Consolidated biochemical profile of subacute stage traumatic brain injury in early development. Front. Neurosci. 2019; 13: 431. doi: 10.3389/fnins.2019.00431
  11. Shahim P., Zetterberg H. Neurochemical markers of traumatic brain injury: relevance to acute diagnostics, disease monitoring, and neuropsychiatric outcome prediction. Biological Psychiatry. 2022; 91(5): 405–412. doi: 10.1016/j.biopsych.2021.10.010
  12. Folkersma H., Brevé J.J.P, Tilders F.J.H. et al. Cerebral microdialysis of interleukin (IL)-1ß and IL-6: extraction efficiency and production in the acute phase after severe traumatic brain injury in rats. Acta Neurochir. (Wien). 2008; 150(12): 1277–1284. doi: 10.1007/s00701-008-0151-y
  13. Akamatsu Y., Hanafy K.A. Cell death and recovery in traumatic brain injury. Neurotherapeutics. 2020; 17(2): 446–456. doi: 10.1007/s13311-020-00840-7
  14. Реутов В.П., Сорокина Е.Г., Черненко М.А., Семенова Ж.Б. Оксид азота и аутоиммунные процессы при черепно-мозговой травме. Евразийское научное объединение. 2016; 1(5): 39–46. Reutov V.P., Sorokina E.G., Chernenko M.A., Semenova Zh.B. Nitric oxide and autoimmune processes in traumatic brain injury. Eurasian Scientific Association. 2016; 1(5): 39–46. (In Russ.)
  15. Сорокина Е.Г., Семенова Ж.Б., Лукьянов В.И. Биохимические предикторы ранних и отдаленных исходов черепно-мозговой травмы у детей. Материалы конференции NT + M&Ec’2021; 2021; 154–160. Sorokina E.G., Semenova Zh.B., Luk’janov V.I. Bochemical predictors of early and long-term outcomes of traumatic brain injury. Proceedings of the NT + M&Ec’2021 conference. 2021: 154–160. (In Russ.) doi: 10.47501/978-5-6044060-1-4.24
  16. Jarrahi A., Braun M., Ahluwalia M. et al. Revisiting Traumatic Brain Injury: From Molecular Mechanisms to Therapeutic Interventions. Biomedicines. 2020; 8(10): 389. doi: 10.3390/biomedicines8100389
  17. Komoltsev I.G., Tret’yakova L.V., Frankevich S.O. et al. Neuroinflammatory cytokine response, neuronal death, and microglial proliferation in the hippocampus of rats during the early period after lateral fluid percussion-induced traumatic injury of the neocortex. Mol. Neurobiol. 2022; 59(2): 1151–1167. doi: 10.1007/s12035-021-02668-4
  18. Muhammad M. Tumor necrosis factor alpha: a major cytokine of brain neuroinflammation. В: Behzadi P. Cytokines. IntechOpen. 2020. doi: 10.5772/intechopen.85476
  19. Corps K.N., Roth T.L., McGavern D.B. Inflammation and neuroprotection in traumatic brain injury. JAMA Neurol. 2015; 72(3): 355. doi: 10.1001/jamaneurol.2014.3558
  20. Ramlackhansingh A.F., Brooks D.J., Greenwood R.J. et al. Inflammation after trauma: Microglial activation and traumatic brain injury. Ann. Neurol. 2011; 70(3): 374–383. doi: 10.1002/ana.22455
  21. Tapp Z.M., Godbout J.P., Kokiko-Cochran O.N. A tilted axis: maladaptive inflammation and HPA axis dysfunction contribute to consequences of TBI. Front. Neurol. 2019; 10: 345. doi: 10.3389/fneur.2019.00345
  22. Simon D.W., McGeachy M.J., Bayır H. et al. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat. Rev. Neurol. 2017; 13(3): 171–191. doi: 10.1038/nrneurol.2017.13
  23. Smith C., Gentleman S.M., Leclercq P.D., Murray LS, Griffin WST, Graham DI, Nicoll JAR. The neuroinflammatory response in humans after trauma- tic brain injury: neuroinflammation after brain injury. Neuropathol. Appl. Neurobiol. 2013; 39(6): 654–66. doi: 10.1111/nan.12008
  24. Coughlin J.M., Wang Y., Munro C.A. et al. Neuroinflammation and brain atrophy in former NFL players: an in vivo multimodal imaging pilot study. Neurobiol. Dis. 2015; 74: 58–65. doi: 10.1016/j.nbd.2014.10.019
  25. Сорокина Е.Г., Семенова Ж.Б., Аверьянова Н.С. и др. Полиморфизм гена APOΕ и маркеры повреждения мозга в исходах тяжелой черепно-мозговой травмы у детей. Журнал неврологии и психиатрии им. C.C. Корсакова. 2020; 120(4): 72–80. Sorokina E.G., Semenova Zh.B., Aver’janova N.S. et al. APOΕ gene polymorphism and markers of brain damage in the outcomes of severe traumatic brain injury in children. S.S. Korsakov Journal of Neurology and Psychiatry. 2020; 120(4): 72–80. (In Russ.) doi: 10.17116/jnevro202012004172
  26. Thal S.C., Neuhaus W. The blood–brain barrier as a target in traumatic brain injury treatment. Arch. Med. Res. 2014; 45(8): 698–710. doi: 10.1016/j.arcmed.2014.11.006
  27. Williams A.J., Wei H.H., Dave J.R., Tortella F.C. Acute and delayed neuroinflammatory response following experimental penetrating ballistic brain injury in the rat. J. Neuroinflammation. 2007; 4(1): 17. doi: 10.1186/1742-2094-4-17
  28. Арутюнов А.И. Руководство по нейротравматологии. Ч. I. Черепно-мозговая травма. M.; 1978. Arutjunov A.I. Handbook of neurotraumatology. Part I. Traumatic brain injury. Moscow; 1978. (In Russ.)
  29. Блинов Д.В. Современные представления о роли нарушения резистентности гематоэнцефалического барьера в патогенезе заболеваний ЦНС. Часть 1: Строение и формирование гематоэнцефалического барьера. Эпилепсия и пароксизмальные состояния. 2013; 5(3): 65–75. Blinov D.V. Current concepts of the role of altered blood-brain barrier resistance in the pathogenesis of CNS disorders. Part I: Structure and formation of the blood-brain barrier. Epilepsy and Paroxysmal States. 2013; 5(3): 65–5. (In Russ.)
  30. Добровольский Г.Ф. О роли ультраструктуры паутинной оболочки головного мозга человека в процессе удаления эритроцитов субарахноидально излившейся крови. Вопросы нейрохирургии. 1974; (2): 32–37. Dobrovol’sky G.F. About the role of the ultrastructure of the arachnoid mater of the human brain in the process of removing erythrocytes of subarachnoid hemorrhage. Questions of neurosurgery. 1974; (2): 32–37. (In Russ.)
  31. Добровольский Г.Ф. Система ликворообращения при черепно-мозговой травме. В кн.: Клиническое руководство по черепно-мозговой травме. Под ред. А.Н. Коновалова и др. М.; 1998; 1: 217–224. Dobrovol’sky G.F. The system of cerebrospinal fluid circulation in traumatic brain injury. In: Clinical guide to traumatic brain injury. Eds. A.N. Konovalov et al. Мoscow; 1998; 1: 217–224. (In Russ.)
  32. Добровольский Г.Ф. Электронно-микроскопическое исследование процесса удаления эритроцитов через паутинную оболочку головного мозга при субарахноидальном кровоизлиянии: aвтореф. дис. … канд. мед. наук. М.; 1970. 27 с. Dobrovol’sky G.F. Electron-microscopic study of the process of removal of erythrocytes through the arachnoid membrane of the brain in subarachnoid hemorrhage: abstract of the thesis. dis. … Cand. Sci. (Med.). Moscow; 1970. 27 p. (In Russ.)
  33. Лихтерман Л.Б., Кравчук А.Д., Потапов А.А. Посттравматическая гидроцефалия. Consilium Medicum. 2013; 15(9): 5–12. Lihterman L.B., Kravchuk A.D., Potapov A.A. Post-traumatic hydrocephalus. Consilium Medicum. 2013; 15(9): 5–12. (In Russ.)
  34. Пашинян Г.А., Касумова С.Ю., Добровольский Г.Ф., Ромодановский П.О. Патоморфология и экспертная оценка повреждений головного мозга при черепно-мозговой травме. М., Ижевск; 1994. 134 с. Pashinyan G.A., Kasumova S.Yu., Dobrovol’sky G.F., Romodanovsky P.O. Pathomorphology and expert assessment of brain damage in traumatic brain injury Zkspertiza publ. Moscow, Izhevsk; 1994. 134 p. (In Russ.)
  35. Lu Y., Zhang X.S., Zhang Z.H. et al. Peroxiredoxin 2 activates microglia by interacting with Toll-like receptor 4 after subarachnoid hemorrhage. J. Neuroinflammation. 2018; 15(1): 87. doi: 10.1186/s12974-018-1118-4
  36. Webster K.M., Sun M., Crack P. et al. Inflammation in epileptogenesis after traumatic brain injury. J. Neuroinflammation. 2017; 14(1): 10. doi: 10.1186/s12974-016-0786-1
  37. Лихтерман Л.Б. Травматическое субарахноидальное кровоизлияние. Consilium Medicum. 2012; 14(9): 34–37. Lihterman L.B. Traumatic subarachnoid haemorrhage. Consilium Medicum. 2012; 14(9): 34–37. (In Russ.)
  38. Kwon B.K., Bloom O., Wanner I.B. et al. Neurochemical biomarkers in spinal cord injury. Spinal Cord. 2019; 57(10): 819–831. doi: 10.1038/s41393-019-0319-8
  39. Goodman J.C., Van M., Gopinath S.P., Robertson C.S. Pro-inflammatory and pro-apoptotic elements of the neuroinflammatory response are activated in traumatic brain injury. Acta Neurochir. Suppl. 2008; 102: 437–439. doi: 10.1007/978-3-211-85578-2_85
  40. Zeiler F.A., Thelin E.P., Czosnyka M. et al. Cerebrospinal fluid and microdialysis cytokines in severe traumatic brain injury: a scoping systematic review. Front. Neurol. 2017; 8: 331. doi: 10.3389/fneur.2017.00331
  41. Woodcock T., Morganti-Kossmann M.C. The role of markers of inflammation in traumatic brain injury. Front. Neurol. 2013; 4: 18. doi: 10.3389/fneur.2013.00018
  42. Chiaretti A., Antonelli A., Riccardi R. et al. Nerve growth factor expression correlates with severity and outcome of traumatic brain injury in children. Eur. J. Paediatr. Neurol. 2008; 12(3): 195–204. doi: 10.1016/j.ejpn.2007.07.016
  43. Kuwar R., Rolfe A., Di L. et al. A novel small molecular NLRP3 inflammasome inhibitor alleviates neuroinflammatory response following traumatic brain injury. J. Neuroinflammation. 2019; 16(1): 81. doi: 10.1186/s12974-019-1471-y
  44. Yue Y., Shang C., Dong H., Meng K. Interleukin-1 in cerebrospinal fluid for evaluating the neurological outcome in traumatic brain injury. Biosci. Rep. 2019; 39(4): BSR20181966. doi: 10.1042/BSR20181966
  45. Chatzipanteli K., Vitarbo E., Alonso O.F. et al. Temporal profile of cerebrospinal fluid, plasma, and brain interleukin-6 after normothermic fluid-percussion brain injury: effect of secondary hypoxia. Ther. Hypothermia Temp. Manag. 2012; 2(4): 167–175. doi: 10.1089/ther.2012.0016
  46. Hayakata T., Shiozaki T., Tasaki O. et al. Changes in CSF S100B and cytokine concentrations in early-phase severe traumatic brain injury. Shock. 2004; 22(2): 102–107. doi: 10.1097/01.shk.0000131193.80038.f1
  47. Stein D.M., Lindell A., Murdock K.R. et al. Relationship of serum and cerebrospinal fluid biomarkers with intracranial hypertension and cerebral hypoperfusion after severe traumatic brain injury. J. Trauma. 2011; 70(5): 1096–1103. doi: 10.1097/TA.0b013e318216930d
  48. Bell M.J., Kochanek P.M., Doughty L.A. et al.. Interleukin-6 and interleukin-10 in cerebrospinal fluid after severe traumatic brain injury in children. J. Neurotrauma. 1997; 14(7): 451–457. doi: 10.1089/neu.1997.14.451
  49. Kumar R.G., Boles J.A., Wagner A.K. Chronic inflammation after severe traumatic brain injury: characterization and associations with outcome at 6 and 12 months postinjury. J. Head Trauma Rehabil. 2015; 30(6): 369–381. doi: 10.1097/HTR.0000000000000067
  50. Singhal A., Baker A.J., Hare G.M.T. et al. Association between cerebrospinal fluid interleukin-6 concentrations and outcome after severe human traumatic brain injury. J. Neurotrauma. 2002; 19(8): 929–937. doi: 10.1089/089771502320317087
  51. Amick J.E., Yandora K.A., Bell M.J. et al. The Th1 versus Th2 cytokine profile in cerebrospinal fluid after severe traumatic brain injury in infants and children. Pediatr. Crit. Care Med. 2001; 2(3): 260–264. doi: 10.1097/00130478-200107000-00013
  52. Дюкарев В.В., Юдина С.М., Королев А.Г., Кравчук А.Д. Информативность исследования цитокинового профиля и А-дефенсинов в прогнозировании течения черепно-мозговой травмы. Современные проблемы науки и образования. 2019; (4): 15–15. Dyukarev V.V., Yudina S.M., Korolev A.G., Kravchuk A.D. Informative research cytokine profile and innate immunity factors in predicting the course of traumatic brain injury. Modern problems of science and education. 2019; (4): 15–15. (In Russ.) doi: 10.17513/spno.29021
  53. Дюкарев В.В., Юдина С.М., Кравчук А.Д. Состояние факторов врожденного иммунитета у больных с тяжелой черепно-мозговой травмой. Человек и его здоровье. 2019; (1): 70–76. Dyukarev V.V., Yudina S.M., Kravchuk A.D. Condition of innate immunity factors in patients with severe traumatic brain injury. Man and His Health. 2019; (1): 70–76. (In Russ.) doi: 10.21626/vestnik/2019-1/08
  54. Strle K., Zhou J.H., Shen W.H. et al. lnterleukin-10 in the Brain. Crit. Rev. Immunol. 2001; 21(5): 23. doi: 10.1615/CritRevImmunol.v21.i5.20
  55. Lauw F.N., Pajkrt D., Hack C.E. et al. Proinflammatory effects of IL-10 during human endotoxemia. J. Immunol. 2000; 165(5): 2783–2789. doi: 10.4049/jimmunol.165.5.2783
  56. Shiozaki T., Hayakata T., Tasaki O. et al. Cerebrospinal fluid concentrations of anti-inflammatory mediators in early-phase severe traumatic brain injury. Shock. 2005; 23(5): 406–410. doi: 10.1097/01.shk.0000161385.62758.24
  57. Rhodes J.K.J., Sharkey J., Andrews P.J.D. The temporal expression, cellular localization, and inhibition of the chemokines MIP-2 and MCP-1 after traumatic brain injury in the rat. J. Neurotrauma. 2009; 26(4): 507–525. doi: 10.1089/neu.2008.0686
  58. Clausen F., Marklund N., Hillered L. Acute inflammatory biomarker responses to diffuse traumatic brain injury in the rat monitored by a novel microdialysis technique. J. Neurotrauma. 2019; 36(2): 201–211. doi: 10.1089/neu.2018.5636
  59. Garcia J.M., Stillings S.A., Leclerc J.L. et al. Role of interleukin-10 in acute brain injuries. Front. Neurol. 2017; 8: 244. doi: 10.3389/fneur.2017.00244
  60. Albert V., Subramanian A., Agrawal D. et al. RANTES levels in peripheral blood, CSF and contused brain tissue as a marker for outcome in traumatic brain injury (TBI) patients. BMC Res. Notes. 2017; 10(1):139. doi: 10.1186/s13104-017-2459-2
  61. Дуйсебеков М.М. Содержание нейронспецифической енолазы и цилиарного нейротрофического фактора у больных с ушибом головного мозга. Нейрохирургия и неврология Казахстана. 2011; (4): 14–17. Duisebekov M.M. The content of neuron-specific enolase and ciliary neurotrophic factor in patients with brain contusion. Neurosurgery and Neurology of Kazakhstan. 2011; (4): 14–17. (In Russ.)
  62. Сорокина Е.Г., Семенова Ж.Б., Карасева О.В. и др. Маркеры повреждения мозга в дебюте легкой черепно-мозговой травмы у детей. Новые информационные технологии в медицине, биологии, фармакологии и экологии. 2017; 204–212. Sorokina E.G., Semenova Zh.B., Karaseva O.V. et al. Markers of TBI in debut of mild brain trauma in children. New information technologies in medicine, biology, pharmacology and ecology. 2017; 204–212. (In Russ.)
  63. Епифанцева Н.Н., Борщикова Т.И., Чурляев Ю.А. и др. Прогностическое значение белка S100, нейронспецифической енолазы, эндотелина1 в остром периоде тяжелой черепно-мозговой травмы. Медицина неотложных состояний. 2013; (3): 85–90. Epifantseva N.N., Borshhikova T.I., Churlyaev Yu.A. et al. Prognostic value of protein S100, neuron specific enolase, endothelin1 in the acute period of severe traumatic brain injury. Emergency Medicine. 2013; (3): 85–90. (In Russ.)
  64. Маркелова Е.В., Зенина А.А., Кадыров Р.В. Нейропептиды как маркеры повреждения головного мозга. Современные проблемы науки и образования. 2018; (5): 206–206. Markelova E.V., Zenina A.A., Kadyrov R.V. Neuropeptides as markers of traumatic brain injury. Modern problems of science and education. 2018; (5): 206–206. (In Russ.)
  65. Сосновский Е.А., Пурас Ю.В., Талыпов А.Э. Биохимические маркеры черепно-мозговой травмы. Нейрохирургия. 2014; (2): 83–91. Sosnovsky E.A., Puras Ju.V., Talypov A.E. Biochemical markers of head injury. Neurosurgery. 2014; (2): 83–91. (In Russ.) doi: 10.17650/1683-3295-2014-0-2-83-91
  66. Edalatfar M., Piri S.M., Mehrabinejad M.M. et al. Biofluid biomarkers in traumatic brain injury: a systematic scoping review. Neurocrit. Care. 2021; 35(2): 559–572. doi: 10.1007/s12028-020-01173-1
  67. Shore P.M., Jackson E.K., Wisniewski S.R. et al. Vascular endothelial growth factor is increased in cerebrospinal fluid after traumatic brain injury in infants and children. Neurosurgery. 2004; 54(3): 605–612. doi: 10.1227/01.neu.0000108642.88724.db
  68. Anfinogenova N.D., Quinn M.T., Schepetkin I.A., Atochin D.N. Alarmins and c-Jun N-Terminal Kinase (JNK) signaling in neuroinflammation. Cells. 2020; 9(11): 2350. doi: 10.3390/cells9112350
  69. Pettus E.H., Wright D.W., Stein D.G., Hoffman S.W. Progesterone treatment inhibits the inflammatory agents that accompany traumatic brain injury. Brain Res. 2005; 1049(1): 112–119. doi: 10.1016/j.brainres.2005.05.004
  70. Wang Y.Q., Wang L., Zhang M.Y. et al. Necrostatin-1 Suppresses autophagy and apoptosis in mice traumatic brain injury model. Neurochem. Res. 2012; 37(9): 1849–1858. doi: 10.1007/s11064-012-0791-4
  71. Mayeux J., Katz P., Edwards S. et al. Inhibition of endocannabinoid degradation improves outcomes from mild traumatic brain injury: a mechanistic role for synaptic hyperexcitability. J. Neurotrauma. 2017; 34(2): 436–443. doi: 10.1089/neu.2016.4452
  72. Raslan F., Schwarz T., Meuth S.G. et al. Inhibition of bradykinin receptor B1 protects mice from focal brain injury by reducing blood–brain barrier leakage and inflammation. J. Cereb. Blood Flow Metab. 2010; 30(8): 1477–1486. doi: 10.1038/jcbfm.2010.28
  73. Morin A., Mouzon B., Ferguson S. et al. Nilvadipine suppresses inflammation via inhibition of P-SYK and restores spatial memory deficits in a mouse model of repetitive mild TBI. Acta Neuropathol. Commun. 2020; 8(1): 166. doi: 10.1186/s40478-020-01045-x
  74. Skovira J.W., Wu J., Matyas J.J. et al. Cell cycle inhibition reduces inflammatory responses, neuronal loss, and cognitive deficits induced by hypobaria exposure following traumatic brain injury. J. Neuroinflam. 2016; 13(1): 299. doi: 10.1186/s12974-016-0769-2
  75. Tuttolomondo A., Pecoraro R., Pinto A. Studies of selective TNF inhibitors in the treatment of brain injury from stroke and trauma: a review of the evidence to date. Drug Des. Devel. Ther. 2014; 8: 2221–2238. doi: 10.2147/DDDT.S67655
  76. Zhang B., West E.J., Van K.C. et al. HDAC inhibitor increases histone H3 acetylation and reduces microglia inflammatory response following traumatic brain injury in rats. Brain Res. 2008; 1226: 181–191. doi: 10.1016/j.brainres.2008.05.085
  77. Jesus A.A., Goldbach-Mansky R. IL-1 blockade in autoinflammatory syndromes. Annu. Rev. Med. 2014; 65(1): 223–244. doi: 10.1146/annurev-med-061512-150641
  78. Hutchinson P.J., O’Connell M.T., Rothwell N.J. et al. Inflammation in human brain injury: intracerebral concentrations of IL-1α, IL-1β, and their endo- genous inhibitor IL-1ra. J. Neurotrauma. 2007; 24(10): 1545–1557. doi: 10.1089/neu.2007.0295
  79. Mazzeo A.T., Beat A., Singh A., Bullock M.R. The role of mitochondrial transition pore, and its modulation, in traumatic brain injury and delayed neurodegeneration after TBI. Exp. Neurol. 2009; 218(2): 363–370. doi: 10.1016/j.expneurol.2009.05.026
  80. Tobinick E., Kim N.M., Reyzin G. et al. Selective TNF inhibition for chronic stroke and traumatic brain injury: an observational study involving 629 consecutive patients treated with perispinal etanercept. CNS Drugs. 2012; 26(12): 1051–1070. doi: 10.1007/s40263-012-0013-2
  81. Tobinick E. Rapid improvement of chronic stroke deficits after perispinal etanercept: three consecutive cases. CNS Drugs. 2011; 25(2): 145–155. doi: 10.2165/11588400-000000000-00000
  82. Tobinick E., Rodriguez-Romanacce H., Levine A. et al. Immediate neurological recovery following perispinal etanercept years after brain injury. Clin. Drug Investig. 2014; 34(5): 361–366. doi: 10.1007/s40261-014-0186-1
  83. Butchart J., Brook L., Hopkins V. et al. Etanercept in Alzheimer disease. 2015; 84(21): 2161-2168. doi: 10.1212/WNL.0000000000001617
  84. Cheong C.U., Chang C.P., Chao C.M. et al. Etanercept attenuates traumatic brain injury in rats by reducing brain TNF-α contents and by stimulating newly formed neurogenesis. Mediators Inflamm. 2013; 2013: 620837. doi: 10.1155/2013/620837
  85. Dhillon S., Lyseng-Williamson K.A., Scott L.J. Etanercept: a review of its use in the management of rheumatoid arthritis. Drugs. 2007; 67(8): 1211–1241. doi: 10.2165/00003495-200767080-00011
  86. Zhou H. Clinical pharmacokinetics of etanercept: a fully humanized soluble recombinant tumor necrosis factor receptor fusion protein. J. Clin. Pharmacol. 2005; 45(5): 490–497. doi: 10.1177/0091270004273321
  87. Комольцев И.Г., Лёвшина И.П., Новикова М.Р. и др. Комплексное исследование раннего постравматического периода у крыс после дозированной черепно-мозговой травмы. Материалы XXIII Съезда Физиологического общества им. И.П. Павлова с международным участием. М.; 2017: 625–627. Komoltsev I.G., Levshina I.P., Novikova M.R. Complex study of acute posttraumatic period after dosed traumatic brain injury in rats. Proceedings of the XXIII Congress of the Physiological Society. I.P. Pavlova with international participation. Moscow; 2017: 625–627.
  88. Комольцев И.Г., Франкевич С.О., Широбокова Н.И. и др. Ранние электрофизиологические последствия дозированной черепно-мозговой травмы у крыс. Журнал неврологии и психиатрии им. С.С. Корсакова. 2018; 118(10): 21–26. Komoltsev I.G., Frankevich S.O., Shirobokova N.I. et al. Early electrophysiological consequences of dosed traumatic-brain injury in rats. Journal of Neurology and Psychiatry named after S.S. Korsakov. 2018; 118(10): 21–26. (In Russ.) doi: 10.17116/jnevro201811810221
  89. Комольцев И.Г., Волкова А.А., Лёвшина И.П. и др. Число IgG-позитивных нейронов в гиппокампе крыс увеличивается после дозированной черепно-мозговой травмы. Нейрохимия. 2018; 35(3): 250–255. Komol’tsev I.G., Volkova А.А., Levshina I.P. et al. The number of IgG-positive neurons in the rat hippocampus increasesafter dosed traumatic brain injury. Neurochemistry. 2018; 35(3): 250–255. (In Russ.) doi: 10.1134/S1027813318030056
  90. Aisiku I.P., Yamal J.M., Doshi P. et al. Plasma cytokines IL-6, IL-8, and IL-10 are associated with the development of acute respiratory distress syndrome in patients with severe traumatic brain injury. Crit. Care. 2016; 20(1): 288. doi: 10.1186/s13054-016-1470-7

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Вызванные ЧМТ повреждения и изменения процессов в головном мозге.

Скачать (400KB)
3. Рис. 2. Во время механического повреждения головного мозга происходят острая гибель нейронов, повреждение тканей головного мозга, разрыв ГЭБ. После этого нейтрофилы мигрируют в ткани головного мозга. Микроглия, астроглия и лейкоциты начинают продуцировать цитокины и хемокины. Микроглия дифференцируется в два подкласса, провоспалительный ответ М1 более длительный, чем противовоспалительный, и сохраняется довольно долгое время после травмы. Астроциты приводят к образованию глиальных рубцов. Повышенный уровень цитокинов, накопление продуктов распада нейронов, нарушения нейрохимических процессов запускают каскад проапоптотических реакций.

Скачать (316KB)

© Карчевская А.Е., Паюшина О.В., Шарова Е.В., Окнина Л.Б., Титов О.Ю., 2023

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах