Структурная и функциональная нейровизуализация при боковом амиотрофическом склерозе


Цитировать

Полный текст

Аннотация

Резюме. Боковой амиотрофический склероз (БАС) – фатальное прогрессирующее заболевание центральной нервной системы с поражением верхнего и нижнего мотонейронов. Изучение особенностей течения и распространения нейродегенеративного процесса при БАС имеют большое значение, поскольку до настоящего времени эффективные методы лечения заболевания не разработаны. В клинической практике отсутствуют объективные биомаркеры поражения верхнего мотонейрона и экстрамоторных регионов головного мозга, несмотря на очевидные доказательства мультисистемности поражения головного мозга при БАС. В последние годы большую роль в изучении БАС играют методы структурной и функциональной нейровизуализации, такие как МР-морфометрия, диффузионно-тензорная МРТ, МР-спектроскопия, фунциональная МРТ, позитронно-эмиссионная томография (ПЭТ) и другие. В обзоре анализируются результаты нейровизуализационных исследований в контексте их применения для диагностики, прогнозирования и мониторирования течения БАС. Для диагностики заболевания наиболее чувствительными и специфичными являются диффузионно-тензорная МРТ, МР-спектроскопия, ПЭТ, комбинация нескольких методов нейровизуализации и их сочетание с транскраниальной магнитной стимуляцией. Диффузионно-тензорная МРТ и МР-спектроскопия могут использоваться для мониторинга и прогнозирования течения заболевания. Обсуждаются основные ограничения и недостатки проведённых исследований, а также возможные перспективы применения нейровизуализации при БАС.

Об авторах

Илья Сергеевич Бакулин

ФГБНУ «Научный центр неврологии»

Автор, ответственный за переписку.
Email: bakulin@neurology.ru
ORCID iD: 0000-0003-0716-3737

к.м.н., н.с. отд. нейрореабилитации и физиотерапии

Россия, Москва

Александр В. Червяков

ФГБНУ «Научный центр неврологии»

Email: bakulin@neurology.ru
Россия, Москва

Елена Игоревна Кремнева

ФГБНУ «Научный центр неврологии»

Email: bakulin@neurology.ru
Россия, Москва

Родион Николаевич Коновалов

ФГБНУ «Научный центр неврологии»

Email: bakulin@neurology.ru
ORCID iD: 0000-0001-5539-245X

к.м.н., с.н.с. отд. лучевой диагностики

Россия, 125367, Москва, Волоколамское шоссе, д. 80

Мария Николаевна Захарова

ФГБНУ «Научный центр неврологии»

Email: bakulin@neurology.ru
Россия, Москва

Список литературы

  1. Zavalishin I.A. (ed.). [Amyotrophic lateral sclerosis]. Moscow: Evraziуa+ , 2007, 448 p. (In Russ.).
  2. Zakharova M.N., Illarioshkin S.N., Abramycheva N.Yu. et al. [Amyotrophic lateral sclerosis]. In: Gusev E.I., Konovalov A.N., Geht A.B. (eds.) [Neurology. National guide]. Moscow: GEOTAR-Media, 2014: 420-439. (In Russ.).
  3. Turner M.R., Swash M. The expanding syndrome of amyotrophic lateral sclerosis: a clinical and molecular odyssey. J Neurol Neurosurg Psychiatry 2015; 86 (6): 667-73. doi: 10.1136/jnnp-2014-308946. PMID: 25644224.
  4. Phukan J., Elamin M., Bede P. et al. The syndrome of cognitive impairment in amyotrophic lateral sclerosis: a population-based study. J Neurol Neurosurg Psychiatry 2012; 83: 102–08. PMID: 21836033. doi: 10.1136/jnnp-2011-300188.
  5. Blasco H., Vourc'h P., Pradat P.F. et al. Further development of biomarkers in amyotrophic lateral sclerosis. Expert Rev Mol Diagn. 2016; 16 (8): 853-68. PMID: 27275785. doi: 10.1080/14737159.2016.1199277.
  6. Kraemer M., Buerger M., Berlit P. Diagnostic problems and delay of diagnosis in amyotrophic lateral sclerosis. Clin Neurol Neurosurg 2010; 112 (2): 103-5. PMID: 27275785. doi: 10.1080/14737159.2016.1199277.
  7. Illarioshkin S.N., Tanashyan M.M., Maksimova M.Yu. et al. [The concept of biomarkers in clinical neurology: the possibility of early diagnosis and prognosis of individual risk]. In: Piradov M.A., Illarioshkin S.N., Tanashyan M.M. (eds). [Neurology of XXI century: Diagnostic, therapeutic and research technologies. Guide for doctors] Moscow, «ATMO» , 2015; 3: 363-424. (In Russ.).
  8. Turner M.R., Verstraete E. What does imaging reveal about the pathology of amyotrophic lateral sclerosis? Curr Neurol Neurosci Rep. 2015; 15 (7): 45. PMID: 26008817. doi: 10.1007/s11910-015-0569-6.
  9. Chiò A., Pagani M., Agosta F. et al. Neuroimaging in amyotrophic lateral sclerosis: insights into structural and functional changes // Lancet Neurol. 2014; 13 (12): 1228-40. PMID: 25453462. doi: 10.1016/S1474-4422(14)70167-X.
  10. Pradat P.F., El Mendili M.M. Neuroimaging to investigate multisystem involvement and provide biomarkers in amyotrophic lateral sclerosis // Biomed Res Int. 2014; 2014: 467560. PMID: 24949452. doi: 10.1155/2014/467560.
  11. Piradov M.A., Tanashyan M.M., Krotenkova M.V. et al. [State-of-the-art neuroimaging techniques]. Annals of Clinical and Experimentl Neurology. 2015; 9 (4): 13-20. (In Russ.).
  12. Kremneva E.I., Vorobyeva A.A., Adarcheva L.S. [Forewarned is forearmed: MRI practical aspects in Hirayama disease]. Luchevaya diagnostika i terapiya 2015; 6 (3): 35-43. (In Russ.).
  13. Bede P., Hardiman O. Lessons of ALS imaging: Pitfalls and future directions - A critical review. Neuroimage Clin 2014; 4: 436-43. PMID: 24624329. doi: 10.1016/j.nicl.2014.02.011.
  14. Foerster B.R., Welsh R.C., Feldman E.L. 25 years of neuroimaging in amyotrophic lateral sclerosis. Nat Rev Neurol 2013; 9 (9): 513-24. PMID: 23917850. doi: 10.1038/nrneurol.2013.153.
  15. Sabatelli M., Conte A., Zollino M. Clinical and genetic heterogeneity of amyotrophic lateral sclerosis. Clin Genet 2013; 83 (5): 408-16. PMID: 23379621. doi: 10.1111/cge.12117.
  16. Leblond C.S., Kaneb H.M., Dion P.A., Rouleau G.A. Dissection of genetic factors associated with amyotrophic lateral sclerosis. Exp Neurol 2014; 262: 91-101. PMID: 24780888. doi: 10.1016/j.expneurol.2014.04.013.
  17. Swinnen B., Robberecht W. The phenotypic variability of amyotrophic lateral sclerosis. Nat Rev Neurol. 2014; 10: 661–70. PMID: 25311585. doi: 10.1038/nrneurol.2014.184.
  18. Jawdat O., Statland J.M., Barohn R.J. Amyotrophic Lateral Sclerosis Regional Variants (Brachial Amyotrophic Diplegia, Leg Amyotrophic Diplegia, and Isolated Bulbar Amyotrophic Lateral Sclerosis). Neurol Clin 2015; 33(4): 775-85. PMID: 26515621. doi: 10.1016/j.ncl.2015.07.003.
  19. Beghi E., Chio` A., Couratier P. et al.; Eurals Consortium. The epidemiology and treatment of ALS: focus on the heterogeneity of the disease and critical appraisal of therapeutic trials. Amyotroph Lateral Scler Other Motor Neuron Disord 2011; 12: 1–10. PMID: 20698807. doi: 10.3109/17482968.2010.502940.
  20. Traynor B.J., Codd M.B., Corr B. et al. Clinical features of amyotrophic lateral sclerosis according to the El Escorial and Airlie House diagnostic criteria: A population-based study. Arch Neurol 2000. 57(8); 1171-1176. PMID: 10927797.
  21. Swash M. Why are upper motor neuron signs difficult to elicit in amyotrophic lateral sclerosis? J Neurol Neurosurg Psychiatry 2012; 83 (6): 659-62. PMID: 22496581. DOI:m10.1136/jnnp-2012-302315.
  22. Bakulin I.S., Chervyakov A.V., Zakharova M.N. [Navigated transcranial magnetic stimulation possibilities in difficult diagnostic cases upper motor neuron lesions – case report]. Nervno-myshechnye bolezni 2015; 2; 32-37. (In Russ.).
  23. Huynh W., Simon N.G., Grosskreutz J. et al. Assessment of the upper motor neuron in amyotrophic lateral sclerosis. Clin Neurophysiol. 2016; 127 (7): 2643-60. PMID: 27291884. doi: 10.1016/j.clinph.2016.04.025.
  24. Verstraete E., Foerster B.R. Neuroimaging as a New Diagnostic Modality in Amyotrophic Lateral Sclerosis. Neurotherapeutics. 2015; 12 (2): 403-16. PMID: 25791072. doi: 10.1007/s13311-015-0347-9.
  25. Stuchevskaya T.R., Tyutin L.A., Pozdnyakov A.V. et al. [Brain magnetic resonance imaging in patients with classical amyotrophic lateral sclerosis and its atypical variants]. Nevrol zhurn 2015; 20 (4): 29-35. (In Russ.).
  26. Huynh W., Lam A., Vucic S. et al. Corticospinal tract dysfunction and development of amyotrophic lateral sclerosis following electrical injury. Muscle Nerve 2010; 42: 288–92. PMID: 20589889. doi: 10.1002/mus.21681.
  27. Rocha A.J., Maia Júnior A.C. Is magnetic resonance imaging a plausible biomarker for upper motor neuron degeneration in amyotrophic lateral sclerosis/primary lateral sclerosis or merely a useful paraclinical tool to exclude mimic syndromes? A critical review of imaging applicability in clinical routine. Arquivos de neuro-psiquiatria 2012; 70: 532–9. PMID: 22836461.
  28. Hecht M.J., Fellner F., Fellner C. Hyperintense and hypointense MRI signals of the precentral gyrus and corticospinal tract in ALS: a follow-up examination including FLAIR images. J Neurol Sci. 2002; 199 (1-2): 59-65. PMID: 12084444.
  29. Jin J., Hu F., Zhang Q. et al. Hyperintensity of the corticospinal tract on FLAIR: A simple and sensitive objective upper motor neuron degeneration marker in clinically verified amyotrophic lateral sclerosis // J Neurol Sci. 2016; 367: 177-83. PMID: 27423585. doi: 10.1016/j.jns.2016.06.005.
  30. Pronin I.N., Fadeeva L.M., Zakharova N.E. et al. [Diffusion tensor imaging and diffusion tensor tractography]. Annals of Clinical and Experimental Neurology. 2008; 2 (1): 32-41. (In Russ.).
  31. Foerster B.R., Dwamena B.A., Petrou M. et al. Diagnostic accuracy of diffusion tensor imaging in amyotrophic lateral sclerosis: a systematic review and individual patient data meta-analysis. Acad Radiol. 2013; 20 (9):1099-106. PMID: 23931423. doi: 10.1016/j.acra.2013.03.017.
  32. Ben Bashat D., Artzi M., Tarrasch R. et al. A potential tool for the diagnosis of ALS based on diffusion tensor imaging. Amyotroph Lateral Scler. 2011; 12 (6): 398-405. doi: 10.3109/17482968.2011.582646.
  33. Schuster C., Elamin M., Hardiman O, Bede P. The segmental diffusivity profile of amyotrophic lateral sclerosis associated white matter degeneration. Eur J Neurol 2016; 23(8): 1361-71. doi: 10.1111/ene.13038.
  34. Filippini N., Douaud G., Mackay C.E. et al. Corpus callosum involvement is a consistent feature of amyotrophic lateral sclerosis. Neurology. 2010; 75(18): 1645-52. PMID: 21041787. doi: 10.1212/WNL.0b013e3181fb84d1.
  35. Kaufmann P., Pullman S.L., Shungu D.C. et al. Objective tests for upper motor neuron involvement in amyotrophic lateral sclerosis (ALS). Neurology 2004; 62: 1753–57. PMID: 15159473.
  36. Kalra S., Hanstock C.C., Martin W.R. et al. Detection of cerebral degeneration in amyotrophic lateral sclerosis using high-field magnetic resonance spectroscopy. Arch Neurol 2006; 63: 1144–48. PMID: 16908742. doi: 10.1001/archneur.63.8.1144.
  37. Zhu H., Edden R.A., Ouwerkerk R. et al. High resolution spectroscopic imaging of GABA at 3 Tesla. Magn Reson Med. 2011; 65 (3): 603-609. PMID: 21337399. doi: 10.1002/mrm.22671.
  38. Foerster B.R., Callaghan B.C., Petrou M. et al. Decreased motor cortex gamma-aminobutyric acid in amyotrophic lateral sclerosis. Neurology. 2012; 78 (20): 1596- 1600. PMID: 22517106. doi: 10.1212/WNL.0b013e3182563b57.
  39. Verstraete E., Veldink J.H., Hendrikse J. et al. Structural MRI reveals cortical thinning in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2012; 83: 383-388. PMID: 21965521. doi: 10.1136/jnnp-2011-300909.
  40. Walhout R., Westeneng H.J., Verstraete E. et al. Cortical thickness in ALS: towards a marker for upper motor neuron involvement. J Neurol Neurosurg Psychiatry 2015; 86: 288-294. PMID: 25121571. doi: 10.1136/jnnp-2013-306839.
  41. Agosta F., Valsasina P., Riva N. et al. The cortical signature of amyotrophic lateral sclerosis. PLoS One. 2012; 7 (8): 42816. PMID: 22880116. doi: 10.1371/journal.pone.0042816.
  42. Chen Z., Ma L. Grey matter volume changes over the whole brain in amyotrophic lateral sclerosis: a voxel-wise meta-analysis of voxel based morphometry studies. Amyotroph Lateral Scler. 2010; 11: 549–554. PMID: 20929296. doi: 10.3109/17482968.2010.516265.
  43. Dalakas M.C., Hatazawa J., Brooks R.A., Di Chiro G. Lowered cerebral glucose utilization in amyotrophic lateral sclerosis. Ann Neurol 1987; 22: 580–86. PMID: 3501273. doi: 10.1002/ana.410220504.
  44. Hoffman J.M., Mazziotta J.C., Hawk T.C., Sumida R. Cerebral glucose utilization in motor neuron disease. Arch Neurol. 1992; 49: 849–54. PMID: 1524517.
  45. Pagani M., Chiò A., Valentini M.C. et al. FDG-PET in amyotrophic lateral sclerosis—functional pattern and diagnostic accuracy. Neurology 2014; 83: 1067–74. PMID: 26940764. doi: 10.2967/jnumed.115.166272.
  46. Van Laere K., Vanhee A., Verschueren J. et al. Value of 18fluorodeoxyglucose-positron-emission tomography in amyotrophic lateral sclerosis: a prospective study. JAMA Neurol 2014; 71: 553–61. PMID: 24615479. doi: 10.1001/jamaneurol.2014.62.
  47. Foerster B.R., Carlos R.C., Dwamena B.A. et al. Multimodal MRI as a diagnostic biomarker for amyotrophic lateral sclerosis. Ann Clin Transl Neurol. 2014; 1: 107–14. PMID: 25356389. doi: 10.1002/acn3.30.
  48. Cervo A., Cocozza S., Sacca F. et al. The combined use of conventional MRI and MR spectroscopic imaging increases the diagnostic accuracy in amyotrophic lateral sclerosis. Eur J Radiol. 2015; 84: 151–7. PMID: 25466774. doi: 10.1016/j.ejrad.2014.10.019.
  49. Pohl C., Block W., Traber F. et al. Proton magnetic resonance spectroscopy and transcranial magnetic stimulation for the detection of upper motor neuron degeneration in ALS patients. J Neurol Sci. 2001; 190: 21–27. PMID: 11574102.
  50. Furtula J., Johnsen B., Frandsen J. et al. Upper motor neuron involvement in amyotrophic lateral sclerosis evaluated by triple stimulation technique and diffusion tensor MRI. J Neurol. 2013; 260 (6): 1535-44. PMID: 23299622. doi: 10.1007/s00415-012-6824-8.
  51. Bae J.S., Ferguson M., Tan R. et al. Dissociation of Structural and Functional Integrities of the Motor System in Amyotrophic Lateral Sclerosis and Behavioral-Variant Frontotemporal Dementia. J Clin Neurol. 2016; 12 (2): 209-17. PMID: 26932257. doi: 10.3988/jcn.2016.12.2.209.
  52. Qureshi M., Schoenfeld D.A., Paliwal Y. et al. The natural history of ALS is changing: improved survival. Amyotroph Lateral Scler Other Motor Neuron Disord. 2009; 10: 324–31. PMID: 19922119. doi: 10.3109/17482960903009054.
  53. Rutkove S.B. Clinical Measures of Disease Progression in Amyotrophic Lateral Sclerosis. Neurotherapeutics. 2015; 12 (2): 384-93. PMID: 25582382. doi: 10.1007/s13311-014-0331-9.
  54. Mitsumoto H., Brooks B.R., Silani V. Clinical trials in amyotrophic lateral sclerosis: why so many negative trials and how can trials be improved? Lancet Neurol. 2014; 13 (11): 1127-1138. PMID: 25316019. doi: 10.1016/S1474-4422(14)70129-2.
  55. Keil C., Prell T., Peschel T. et al. Longitudinal diffusion tensor imaging in amyotrophic lateral sclerosis. BMC Neurosci. 2012; 13: 141. PMID: 23134591. doi: 10.1186/1471-2202-13-141.
  56. Menke R.A., Abraham I., Thiel C.S. et al. Fractional anisotropy in the posterior limb of the internal capsule and prognosis in amyotrophic lateral sclerosis. Arch Neurol. 2012; 69: 1493–99. PMID: 22910997. doi: 10.1001/archneurol.2012.1122.
  57. van der Graaff M.M., Sage C.A., Caan M.W. et al. Upper and extramotoneuron involvement in early motoneuron disease: a diffusion tensor imaging study. Brain. 2011; 134: 1211–28. PMID: 21362631. doi: 10.1093/brain/awr016.
  58. Sage C.A., Peeters R.R., Gorner A. et al. Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis. Neuroimage. 2007; 34: 486–99. PMID: 17097892. doi: 10.1016/j.neuroimage.2006.09.025.
  59. Kwan J.Y., Meoded A., Danielian L.E. et al. Structural imaging differences and longitudinal changes in primary lateral sclerosis and amyotrophic lateral sclerosis. Neuroimage Clin. 2013; 2: 151–60. PMID: 24179768. doi: 10.1016/j.nicl.2012.12.003.
  60. Agosta F., Rocca M.A., Valsasina P. et al. A longitudinal diffusion tensor MRI study of the cervical cord and brain in amyotrophic lateral sclerosis patients. J Neurol Neurosurg Psychiatry. 2009; 80 (1): 53–55. PMID: 18931009. doi: 10.1136/jnnp.2008.154252.
  61. Blain C.R., Williams V.C., Johnston C. et al. A longitudinal study of diffusion tensor MRI in ALS. Amyotroph Lateral Scler. 2007; 8 (6): 348–55. PMID: 17924235. doi: 10.1080/17482960701548139.
  62. Mitsumoto H., Ulug A.M., Pullman S.L. et al. Quantitative objective markers for upper and lower motor neuron dysfunction in ALS. Neurology. 2007; 68 (17): 1402–10. PMID: 17452585. doi: 10.1212/01.wnl.0000260065.57832.87.
  63. Senda J., Kato S., Kaga T. et al. Progressive and widespread brain damage in ALS: MRI voxel-based morphometry and diffusion tensor imaging study. Amyotroph Lateral Scler. 2011; 12 (1): 59–69. PMID: 21271792. doi: 10.3109/17482968.2010.517850.
  64. Zhang Y., Schuff N., Woolley S.C. et al. Progression of white matter degeneration in amyotrophic lateral sclerosis: a diffusion tensor imaging study. Amyotroph Lateral Scler. 2011; 12 (6): 421–29. PMID: 21745124. doi: 10.3109/17482968.2011.593036.
  65. Agosta F., Gorno-Tempini M.L., Pagani E. et al. Longitudinal assessment of grey matter contraction in amyotrophic lateral sclerosis: a tensor based morphometry study. Amyotroph Lateral Scler. 2009; 10 (3): 168–74. PMID: 19058055. doi: 10.1080/17482960802603841.
  66. Cardenas-Blanco A., Machts J., Acosta-Cabronero J. et al. Structural and diffusion imaging versus clinical assessment to monitor amyotrophic lateral sclerosis. Neuroimage Clin. 2016; 11: 408-14. PMID: 27104135. doi: 10.1016/j.nicl.2016.03.011.
  67. Block W., Karitzky J., Traber F. et al. Proton magnetic resonance spectroscopy of the primary motor cortex in patients with motor neuron disease: subgroup analysis and follow-up measurements. Arch Neurol. 1998; 55 (7): 931–36. PMID: 9678310.
  68. Pohl C., Block W., Karitzky J., et al. Proton magnetic resonance spectroscopy of the motor cortex in 70 patients with amyotrophic lateral sclerosis. Arch Neurol. 2001; 58 (5): 729–35. PMID: 11346367.
  69. Block W., Traber F., Flacke S. et al. In-vivo proton MR-spectroscopy of the human brain: assessment of N-acetylaspartate (NAA) reduction as a marker for neurodegeneration. Amino Acids. 2002; 23 (1-3): 317–23. PMID: 12373553. doi: 10.1007/s00726-001-0144-0.
  70. Suhy J., Miller R.G., Rule R. et al. Early detection and longitudinal changes in amyotrophic lateral sclerosis by (1)H MRSI. Neurology. 2002; 58 (5): 773–79. PMID: 11889242.
  71. Rule R.R., Suhy J., Schuff N. et al. Reduced NAA in motor and non-motor brain regions in amyotrophic lateral sclerosis: a cross-sectional and longitudinal study. Amyotroph Lateral Scler Other Motor Neuron Disord. 2004; 5 (3): 141–49. PMID: 15512902. doi: 10.1080/14660820410017109.
  72. Unrath A., Ludolph A.C., Kassubek J. Brain metabolites in definite amyotrophic lateral sclerosis. A longitudinal proton magnetic resonance spectroscopy study. J Neurol. 2007; 254 (8): 1099–106. PMID: 17431700. doi: 10.1007/s00415-006-0495-2.
  73. Kalra S., Tai P., Genge A, Arnold D.L. Rapid improvement in cortical neuronal integrity in amyotrophic lateral sclerosis detected by proton magnetic resonance spectroscopic imaging. J Neurol. 2006; 253 (8): 1060–63. PMID: 16609809. doi: 10.1007/s00415-006-0162-7.
  74. Lee S., Kim H.J. Prion-like Mechanism in Amyotrophic Lateral Sclerosis: are Protein Aggregates the Key? Exp Neurobiol. 2015; 24 (1): 1-7. PMID: 25792864. doi: 10.5607/en.2015.24.1.1.
  75. Grad L.I., Fernando S.M., Cashman N.R. From molecule to molecule and cell to cell: prion-like mechanisms in amyotrophic lateral sclerosis. Neurobiol Dis. 2015; 77: 257-65. PMID: 25701498. doi: 10.1016/j.nbd.2015.02.009.
  76. Schmidt R., Verstraete E., de Reus M.A. et al. Correlation between structural and functional connectivity impairment in amyotrophic lateral sclerosis // Hum Brain Mapp. 2014; 35 (9): 4386-95. PMID: 24604691. doi: 10.1002/hbm.22481.
  77. Lysogorskaia E.V., Abramycheva N.Y., Illarioshkin S.N., Zakharova M.N. [The role of RNA metabolism in the pathogenesis of amyotrophic lateral sclerosis]. Neurochemical journal 2012; 3: 247-252. (In Russ.).
  78. Brettschneider J., Del Tredici K., Toledo J.B. et al. Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol. 2013; 74(1): 20-38. PMID: 23686809. doi: 10.1002/ana.23937.
  79. Kassubek J., Muller H.P., Del Tredici K. et al. Diffusion tensor imaging analysis of sequential spreading of disease in amyotrophic lateral sclerosis confirms patterns of TDP-43 pathology. Brain. 2014; 137 (Pt 6): 1733-1740. PMID: 24736303. doi: 10.1093/brain/awu090.
  80. Pupillo E., Messina P., Logroscino G. et al. Long-term survival in amyotrophic lateral sclerosis: a population-based study. Ann Neurol. 2014; 75 (2): 287-97. PMID: 24382602. doi: 10.1002/ana.24096.
  81. Chiò A., Logroscino G., Hardiman O. Prognostic factors in ALS: A critical review. Amyotroph Lateral Scler. 2009; 10 (5-6): 310-23. PMID: 24382602. doi: 10.1002/ana.24096.
  82. Kalra S., Vitale A., Cashman N.R. et al. Cerebral degeneration predicts survival in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2006; 77 (11): 1253-5. PMID: 16835288. doi: 10.1136/jnnp.2006.090696.
  83. Pyra T., Hui B., Hanstock C. et al. Combined structural and neurochemical evaluation of the corticospinal tract in amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2010; 11 (1-2): 157-65. PMID: 19242831. doi: 10.3109/17482960902756473.
  84. Agosta F., Pagani E., Petrolini M. et al. MRI predictors of long-term evolution in amyotrophic lateral sclerosis. Eur J Neurosci. 2010; 32: 1490–96. PMID: 21044177. doi: 10.1111/j.1460-9568.2010.07445.x.
  85. Konrad C., Henningsen H., Bremer J. et al. Pattern of cortical reorganization in amyotrophic lateral sclerosis: a functional magnetic resonance imaging study. Exp Brain Res. 2002; 143 (1): 51-6. PMID: 11907690. doi: 10.1007/s00221-001-0981-9.
  86. Lulé D., Diekmann V., Kassubek J. et al. Cortical plasticity in amyotrophic lateral sclerosis: motor imagery and function. Neurorehabil Neural Repair. 2007; 21 (6): 518-26. PMID: 17476000. doi: 10.1177/1545968307300698.
  87. Stanton B.R., Williams V.C., Leigh P.N. et al. Altered cortical activation during a motor task in ALS. Evidence for involvement of central pathways. J Neurol. 2007; 254 (9): 1260-7. PMID: 17385077. doi: 10.1007/s00415-006-0513-4.
  88. Poujois A., Schneider F.C., Faillenot I. et al. Brain plasticity in the motor network is correlated with disease progression in amyotrophic lateral sclerosis. Hum Brain Mapp. 2013; 34 (10): 2391-401. doi: 10.1002/hbm.22070. PMID: 22461315. doi: 10.1002/hbm.22070.
  89. Chervyakov A.V., Bakulin I.S., Savitskaya N.G. et al. Navigated transcranial magnetic stimulation in amyotrophic lateral sclerosis. Muscle Nerve. 2015; 51(1): 125-31. PMID: 25049055. doi: 10.1002/mus.24345.
  90. Bakulin I.S., Chervyakov A.V., Suponeva N.A. et al. Motor cortex hyperexcitability, neuroplasticity and degeneration in amyotrophic lateral sclerosis. In book: H. Foyaca-Sibat (ed.). Novel Aspects of Amyotrophic Lateral Sclerosis. InTech, 2016; 47–72.
  91. Turner M.R., Hammers A., Al-Chalabi A. et al. Distinct cerebral lesions in sporadic and "D90A" SOD1 ALS: studies with [11C]flumazenil PET. Brain. 2005; 128 (pt 6): 1323-1329. PMID: 15843422. doi: 10.1093/brain/awh509.
  92. Bede P., Bokde A.L., Byrne S. et al. Multiparametric MRI study of ALS stratified for the C9orf72 genotype. Neurology 2013; 81: 361–69. PMID: 23771489. doi: 10.1212/WNL.0b013e31829c5eee.
  93. Ng M.C., Ho J.T., Ho S.L. et al. Abnormal diffusion tensor in nonsymptomatic familial amyotrophic lateral sclerosis with a causative superoxide dismutase 1 mutation. J Magn Reson Imaging. 2008; 27: 8–13. PMID: 18022844. doi: 10.1002/jmri.21217.
  94. Carew J.D., Nair G., Andersen P.M. et al. Presymptomatic spinal cord neurometabolic findings in SOD1-positive people at risk for familial ALS. Neurology. 2011; 77 (14): 1370–5. PMID: 21940617. doi: 10.1212/WNL.0b013e318231526a.
  95. Walhout R., Schmidt R., Westeneng H.J. et al. Brain morphologic changes in asymptomatic C9orf72 repeat expansion carriers. Neurology. 2015; 85 (20): 1780-8. PMID: 26497991. doi: 10.1212/WNL.0000000000002135.

© Bakulin I.S., Chervyakov A.V., Kremneva E.I., Konovalov R.N., Zakharova M.N., 2017

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах