Early markers of thrombotic hazard in cerebrovascular diseases
- Authors: Tanashyan M.M.1, Roitman E.V.1,2, Raskurazhev A.A.1, Domashenko M.A.3, Shabalina A.A.1, Mazur A.S.1
-
Affiliations:
- Russian Center of Neurology and Neurosciences
- Pirogov Russian National Research Medical University
- Lomonosov Moscow State University
- Issue: Vol 19, No 3 (2025)
- Pages: 37-48
- Section: Original articles
- URL: https://journals.rcsi.science/2075-5473/article/view/352490
- DOI: https://doi.org/10.17816/ACEN.1419
- EDN: https://elibrary.ru/NKBDZM
- ID: 352490
Cite item
Abstract
Introduction. Cerebrovascular disease (CVD) is a heterogeneous group of difficult-to-diagnose conditions in which hemorheological and hemostatic disorders significantly impact the risk of ischemic stroke (IS), as well as the prognosis and response to reperfusion therapy and preventive treatment. Laboratory thrombotic hazard markers, such as the thrombin-antithrombin III (TAT) complex, the plasmin-α2-antiplasmin (PAP) complex, thrombomodulin (TM), and the tissue plasminogen activator (tPA)/plasminogen activator inhibitor-1 (PAI-1) activity ratio, have not been adequately evaluated as predictors of different IS subtypes. Their potential role in acute IS has also not been determined.
Aim. The study aimed to evaluate the diagnostic and predictive value of primary thrombotic hazard markers in patients with CVD.
Materials and methods. The retrospective study included 91 patients with acute IS (45% of men; median age: 62 years). At admission, primary clinical parameters were assessed, including a National Institutes of Health Stroke Scale (NIHSS) score. Laboratory parameters and thrombotic hazard markers were also measured using an enzyme-linked immunosorbent assay. Three IS subtypes included large artery atherosclerosis (LAA)-related IS (n = 32), lacunar IS (n = 27), and hemorheological (small artery occlusion-related) IS (n = 32). The clinical outcomes were evaluated at day 10 using the NIHSS scale. A comparison group included patients with chronic CVD (n = 29; 34% men; median age: 55 years).
Results. The plasma levels of almost all study biomarkers differed significantly between patients with IS and chronic CVD, as well as between patients with different IS subtypes. Four of six markers (PAI-1, PAP, TAT, t-PA/PAI-1) were significantly associated with IS development, with TAT showing the strongest association (odds ratio: 4.78; 95% confidence interval: 2.70, 9.68). Linear regression models were used to evaluate the predictive value of thrombotic hazard biomarkers for IS outcomes, and TAT showed the most significant association in this case (p < 0.001). An analysis of the differential value of study biomarkers for different IS subtypes showed that PAI-1 was the most sensitive (0.969) marker for LAA-related IS, while t-PA/PAI-1 (0.99) and TAT (0.889) demonstrated high predictive value for lacunar IS.
Conclusion. Thrombotic hazard markers are a promising laboratory tool for evaluating IS risk and predicting functional outcomes and response to reperfusion therapy in patients with IS.
Full Text
##article.viewOnOriginalSite##About the authors
Marine M. Tanashyan
Russian Center of Neurology and Neurosciences
Email: mazur@neurology.ru
ORCID iD: 0000-0002-5883-8119
Dr. Sci. (Med.), Professor, Full member of RAS, Deputy Director for Science, Head, 1st Neurological department, Institute of Clinical and Preventive Neurology
Russian Federation, 80 Volokolamskoye shosse, Moscow, 125367Eugene V. Roitman
Russian Center of Neurology and Neurosciences; Pirogov Russian National Research Medical University
Email: mazur@neurology.ru
ORCID iD: 0000-0002-3015-9317
Dr. Sci. (Biol.), leading researcher, Professor, Department of oncology, hematology and radiation therapy
Russian Federation, 80 Volokolamskoye shosse, Moscow, 125367; MoscowAnton A. Raskurazhev
Russian Center of Neurology and Neurosciences
Email: rasckey@live.com
ORCID iD: 0000-0003-0522-767X
Cand. Sci. (Med.), senior researcher, 1st Neurological department, Institute of Clinical and Preventive Neurology
Russian Federation, 80 Volokolamskoye shosse, Moscow, 125367Maksim A. Domashenko
Lomonosov Moscow State University
Email: mazur@neurology.ru
ORCID iD: 0009-0000-3630-6130
Cand. Sci. (Med.), Head, Neurology and neurosurgery department, Faculty of fundamental medicine
Russian Federation, MoscowAlla A. Shabalina
Russian Center of Neurology and Neurosciences
Email: mazur@neurology.ru
ORCID iD: 0000-0001-7393-0979
Dr. Sci. (Med.), leading researcher, Head, Laboratory diagnostics department
Russian Federation, 80 Volokolamskoye shosse, Moscow, 125367Andrey S. Mazur
Russian Center of Neurology and Neurosciences
Author for correspondence.
Email: mazur@neurology.ru
ORCID iD: 0000-0001-8960-721X
postgraduate student, 1st Neurological department, Institute of Clinical and Preventive Neurology
Russian Federation, 80 Volokolamskoye shosse, Moscow, 125367References
- Инсульт: инновационные технологии в лечении и профилактике. Руководство для врачей. 4-е издание / под ред. М.А. Пирадова, М.М. Танашян, М.Ю. Максимовой. М.; 2024. Piradov MA, Tanashyan MM, Maksimova MYu (eds.) Stroke: innovative technologies in treatment and prevention. A guide for physicians. 4th ed. Moscow; 2024. (In Russ.)
- Танашян М.М. Гемостаз, гемореология и атромбогенная активность сосудистой стенки в ангионеврологии. Анналы клинической и экспериментальной неврологии. 2007;2(1):29–33. Tanashyan MM. Hemostasis, hemorheology, and the atrombotic activity of the vascular wall in angioneurology. Annals of Clinical and Experimental Neurology. 2007;2(1):29–33.
- Танашян М.М., Мазур А.С., Раскуражев А.А. и др. Интракраниальный атеросклероз: структура, клинические аспекты и факторы риска. Анналы клинической и экспериментальной неврологии. 2025;19(1):5–13. Tanashyan MM, Mazur AS, Raskurazhev AA, et al. Intracranial atherosclerosis: structure, clinical aspects and risk factors. Annals of clinical and experimental neurology. 2025;19(1):5–13. doi: 10.17816/ACEN.1266
- Танашян М.М., Мазур А.С., Раскуражев А.А. Интракраниальный атеросклероз: современное состояние проблемы (обзор литературы). Артериальная гипертензия. 2024;30(4):354–363. Tanashyan MM, Mazur AS, Raskurazhev AA. Intracranial atherosclerosis: the current state of the problem (literature review). Arterial Hypertension. 2024;30(4):354–363. doi: 10.18705/1607-419X-2024-2425
- Zhao X, Yang S, Lei R, et al. Clinical study on the feasibility of new thrombus markers in predicting massive cerebral infarction. Front Neurol. 2023;13:942887. doi: 10.3389/fneur.2022.942887
- Mo J, Liang B, Cen J, et al. Plasma thrombin-antithrombin complex as a candidate biomarker for coronary slow flow. Front Cardiovasc Med. 2025;12:1621655. doi: 10.3389/fcvm.2025.1621655
- Song P, Xie J, Li W, et al. Effect of plasma thrombin-antithrombin complex on ischemic stroke: a systematic review and meta-analysis. Syst Rev. 2023;12(1):17. doi: 10.1186/s13643-023-02174-9
- Ambrus CM, Markus G. Plasmin-antiplasmin complex as a reservoir of fibrinolytic enzyme. Am J Physiol. 1960;199:491–494. doi: 10.1152/ajplegacy.1960.199.3.491
- Singh S, Saleem S, Reed GL. Alpha2-antiplasmin: the devil you don’t know in cerebrovascular and cardiovascular disease. Front Cardiovasc Med. 2020;7:608899. doi: 10.3389/fcvm.2020.608899
- Evensen LH, Folsom AR, Pankow JS et al. Hemostatic factors, inflammatory markers, and risk of incident venous thromboembolism: the multi‐ethnic study of atherosclerosis. J Thromb Haemost. 2021;19(7):1718–1728. doi: 10.1111/jth.15315
- Wiman B, Collen D. On the kinetics of the reaction between human antiplasmin and plasmin. Eur J Biochem. 1978;84(2):573–578. doi: 10.1111/j.1432-1033.1978.tb12200.x
- Martí-Fàbregas J, Borrell M, Cocho D, et al. Hemostatic markers of recanalization in patients with ischemic stroke treated with rt-PA. Neurology. 2005;65(3):366–370. doi: 10.1212/01.wnl.0000171704.50395.ba
- Zaharia AL, Tutunaru D, Oprea VD, et al. Thrombomodulin serum levels — a predictable biomarker for the acute onset of ischemic stroke. Curr Issues Mol Biol. 2024;46(1):677–688. doi: 10.3390/cimb46010044
- Tjärnlund-Wolf A, Brogren H, Lo EH, Wang X. Plasminogen activator inhibitor-1 and thrombotic cerebrovascular diseases. Stroke. 2012;43(10):2833–2839. doi: 10.1161/STROKEAHA.111.622217
- Kim SH, Han SW, Kim EH, et al. Plasma fibrinolysis inhibitor levels in acute stroke patients with thrombolysis failure. J Clin Neurol. 2005;1(2):142. doi: 10.3988/jcn.2005.1.2.142
- Welsh P, Barber M, Langhorne P, et al. Associations of inflammatory and haemostatic biomarkers with poor outcome in acute ischaemic stroke. Cerebrovasc Dis. 2009;27(3):247–253. doi: 10.1159/000196823
- Piazza O, Scarpati G, Cotena S, et al. Thrombin antithrombin complex and IL-18 serum levels in stroke patients. Neurol Int. 2010;2(1):1. doi: 10.4081/ni.2010.e1
- Zhu Z, Guo D, Jia Y, et al. Plasma thrombomodulin levels and ischemic stroke: a population-based prognostic cohort study. Neurology. 2022;99(9):e916–e924. doi: 10.1212/WNL.0000000000200783
- Dharmasaroja P, Dharmasaroja PA, Sobhon P. Increased plasma soluble thrombomodulin levels in cardioembolic stroke. Clin Appl Thromb. Hemost. 2012;18(3):289–293. doi: 10.1177/1076029611432744
- Olivot JM, Labreuche J, Aiach M, et al. Soluble thrombomodulin and brain infarction: case-control and prospective study. Stroke. 2004;35(8):1946– 1951. doi: 10.1161/01.STR.0000133340.37712.9b
- Johansson L, Jansson JH, Boman K, et al. Tissue plasminogen activator, plasminogen activator inhibitor-1, and tissue plasminogen activator/ plasminogen activator inhibitor-1 complex as risk factors for the development of a first stroke. Stroke. 2000;31(1):26–32. doi: 10.1161/01.STR.31.1.26
- Reed GL, Houng AK, Singh S, Wang D. α2-Antiplasmin: new insights and opportunities for ischemic stroke. Semin Thromb Hemost. 2017;43(2):191–199. doi: 10.1055/s-0036-1585077
- Faille D, Labreuche J, Meseguer E, et al. Endothelial markers are associated with thrombolysis resistance in acute stroke patients. Eur J Neurol. 2014;21(4):643–647. doi: 10.1111/ene.12369
- Székely EG, Orbán-Kálmándi R, Szegedi I, et al. Low α2-plasmin inhibitor antigen levels on admission are associated with more severe stroke and unfavorable outcomes in acute ischemic stroke patients treated with intravenous thrombolysis. Front Cardiovasc Med. 2022;9:901286. doi: 10.3389/fcvm.2022.901286
- Szegedi I, Nagy A, Székely EG, et al. PAI‐1 5G/5G genotype is an independent risk of intracranial hemorrhage in post‐lysis stroke patients. Ann Clin Transl Neurol. 2019;6(11):2240–2250. doi: 10.1002/acn3.50923
- Xu X, Song Y, Cao W, et al. Alterations of hemostatic molecular markers during acute large vessel occlusion stroke. J Am Heart Assoc. 2024;13(3):e032651. doi: 10.1161/JAHA.123.032651
- Barakzie A, Jansen AJG, Ten Cate H, de Maat MPM. Coagulation biomarkers for ischemic stroke. Res Pract Thromb Haemost. 2023;7(4):100160. doi: 10.1016/j.rpth.2023.100160
- Jia WL, Jiang YY, Jiang Y, et al. Associations between admission levels of multiple biomarkers and subsequent worse outcomes in acute ischemic stroke patients. J Cereb Blood Flow Metab. 2024;44(5):742–756. doi: 10.1177/0271678X231214831
- Yamazaki M, Uchiyama S, Maruyama S. Alterations of haemostatic markers in various subtypes and phases of stroke. Blood Coagul Fibrinolysis. 1993;4(5):707–712.
Supplementary files




