Cerebrospinal Fluid Biomarkers of Alzheimer Disease

Cover Page

Cite item

Abstract

Alzheimer disease (AD) is a chronic neurodegenerative disorder and the most common cause of dementia in the elderly. Current international guidelines for the clinical diagnosis of AD consider the diagnosis to be both clinical and biological. It requires a specific clinical phenotype and a confirmed biological origin based on biomarkers of amyloid and tau pathology. In Russia, only a few research centers perform laboratory diagnosis of AD using cerebrospinal fluid (CSF) biomarkers. Better access to laboratory diagnosis of AD and wider use of CSF biomarkers in clinical practice will help to assess the true prevalence of AD in the Russian population and to select patients for targeted pathogenic therapies based on the use of monoclonal antibodies against abnormal brain proteins, which have been actively developed in recent years. This review summarizes information on the main CSF biomarkers of AD and their diagnostic and prognostic value.

About the authors

Kseniya V. Nevzorova

Russian Center of Neurology and Neurosciences

Author for correspondence.
Email: nevzorova.k.v@neurology.ru
ORCID iD: 0009-0000-9148-0203

postgraduate student, neurologist, 5th Neurological department with a molecular genetic laboratory, Institute of Clinical and Preventive Neurology

Russian Federation, 80, Volokolamskoye shosse, Moscow, 125367

Yuliya A. Shpilyukova

Russian Center of Neurology and Neurosciences

Email: nevzorova.k.v@neurology.ru
ORCID iD: 0000-0001-7214-583X

Cand. Sci. (Med.), researcher, 5th Neurological department with a molecular genetic laboratory, Institute of Clinical and Preventive Neurology

Russian Federation, 80, Volokolamskoye shosse, Moscow, 125367

Аlla A. Shabalina

Russian Center of Neurology and Neurosciences

Email: nevzorova.k.v@neurology.ru
ORCID iD: 0000-0001-7393-0979

Dr. Sci. (Med.), leading researcher, Head, Laboratory diagnostics department

Russian Federation, 80, Volokolamskoye shosse, Moscow, 125367

Ekaterina Yu. Fedotova

Russian Center of Neurology and Neurosciences

Email: nevzorova.k.v@neurology.ru
ORCID iD: 0000-0001-8070-7644

Dr. Sci. (Med.), leading researcher, Head, 5th Neurological department with a molecular genetic laboratory, Institute of Clinical and Preventive Neurology

Russian Federation, 80, Volokolamskoye shosse, Moscow, 125367

Sergey N. Illarioshkin

Russian Center of Neurology and Neurosciences

Email: nevzorova.k.v@neurology.ru
ORCID iD: 0000-0002-2704-6282

Dr. Sci. (Med.), Prof., Full member of the RAS, Deputy director, Director, Brain Institute

Russian Federation, 80, Volokolamskoye shosse, Moscow, 125367

References

  1. Weller J, Budson A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Res. 2018;7:F1000 Faculty Rev-1161. doi: 10.12688/f1000research.14506.1
  2. Duyckaerts C, Delatour B, Potier MC. Classification and basic pathology of Alzheimer disease. Acta Neuropathol. 2009;118(1):5–36. doi: 10.1007/s00401-009-0532-1
  3. Васенина Е.Е., Левин О.С., Сонин А.Г. Современные тенденции в эпидемиологии деменции и ведении пациентов с когнитивными нарушениями. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2017;117(6-2):87–95. Vasenina EE, Levin OS, Sonin AG. Modern trends in epidemiology of dementia and management of patients with cognitive impairment. S.S. Korsakov Journal of Neurology and Psychiatry. 2017;117(6-2):87–95. doi: 10.17116/jnevro20171176287-95
  4. Коберская Н.Н. Болезнь Альцгеймера. Неврология, нейропсихиатрия, психосоматика. 2019;11(3S):52–60. Koberskaya NN. Alzheimer’s disease. Neurology, Neuropsychiatry, Psychosomatics. 2019;11(3S):52–60. doi: 10.14412/2074-2711-2019-3S-52-60
  5. Преображенская И.С. Современные подходы к диагностике и лечению болезни Альцгеймера. Медицинский cовет. 2017;(10):26–31. Preobrazhenskaya IS. Modern approaches to diagnostics and therapy of Alzheimer disease. Medical Council. 2017;(10):26–31. doi: 10.21518/2079-701X-2017-10-26-31
  6. Dubois B., Villain N, Frisoni GB, et al. Clinical diagnosis of Alzheimer’s disease: recommendations of the Intenational Working Group. Lancet Neurol. 2021;20(6):484–496. doi: 10.1016/S1474-4422(21)00066-1
  7. Таппахов А.А., Николаева Т.Я., Попова Т.Е., Шнайдер Н.А. Трудности диагностики атипичных вариантов болезни Альцгеймера. Российский неврологический журнал. 2021;26(5):16–23. Tappakhov AA, Nikolaeva TYa, Popova TE, Shnayder NA. Difficulties in diagnosing atypical variants of Alzheimer’s disease. Russian neurological journal. 2021;26(5):16–23. doi: 10.30629/2658-7947-2021-26-5-16-23
  8. Шпилюкова Ю.А., Шабалина А.А., Ахмадуллина Д.Р., Федотова Е.Ю. Опыт использования лабораторных биомаркеров в диагностике нейродегенеративных деменций. Бюллетень Национального общества по изучению болезни Паркинсона и расстройств движений. 2022;(2):227–230. Shpilyukova YuA, Shabalina AA, Akhmadullina DR, Fedotova EYu. The experience of using laboratory biomarkers in the diagnosis of neurodegenerative dementia. Bulletin of the National Society for the Study of Parkinson’s Disease and Movement Disorders. 2022;(2):227–230. doi: 10.24412/2226-079X-2022-12474
  9. Nevzorova K, Shpilyukova Y, Shabalina A, et al. Biomarkers of Alzheimer’s disease pathology in atypical non-amnestic clinical phenotypes. Alzheimers Dement., 2023;19(S15):e076010. doi: 10.1002/alz.076010
  10. Гришина Д.А., Хаялиева Н.А., Гринюк В.В., Тюрина А.Ю. Диагностика болезни Альцгеймера с использованием биологических маркеров при синдроме задней корковой атрофии. Неврология, нейропсихиатрия, психосоматика. 2024;16(2):47–55. Grishina DA, Khayalieva NA, Grinyuk VV, Tyurina AYu. Diagnosis of Alzheimer’s disease by using biological markers in posterior cortical atrophy. Neurology, Neuropsychiatry, Psychosomatics. 2024;16(2):47–53. doi: 10.14412/2074-2711-2024-2-47-53
  11. Alzheimer A. Uber eigenartige Erkrankung der Hirnrinde. Über eine eigenartige Erkrankung der Hirnrinde. Allgemeine Zeitschrift fur Psychiatrie und Psychisch-gerichtliche Medizin. 1907;64:146–148.
  12. Kang J, Lemaire HG, Unterbeck A, et al. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature. 1987;325(6106):733–736. doi: 10.1038/325733a0
  13. Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256(5054):184–185. doi: 10.1126/science.1566067
  14. Nalivaeva NN, Turner AJ. The amyloid precursor protein: a biochemical enigma in brain development, function and disease. FEBS Lett. 2013;587(13):2046–2054. doi: 10.1016/j.febslet.2013.05.010
  15. Литвиненко И.В., Емелин А.Ю., Лобзин В.Ю. и др. Амилоидная гипотеза болезни Альцгеймера: прошлое и настоящее, надежды и разочарования. Неврология, нейропсихиатрия, психосоматика. 2019;11(3):4–10. Litvinenko IV, Emelin AYu, Lobzin VYu, et al. The amyloid hypothesis of Alzheimer’s disease: past and present, hopes and disappointments. Neurology, Neuropsychiatry, Psychosomatics. 2019;11(3):4–10. doi: 10.14412/2074-2711-2019-3-4-10
  16. Molinuevo JL, Ayton S, Batrla R, et al. Current state of Alzheimer’s fluid biomarkers. Acta Neuropathol. 2018;136(6):821–853. doi: 10.1007/s00401-018-1932-x
  17. Стефанова Н.А., Колосова Н.Г. Эволюция представлений о патогенезе болезни Альцгеймера. Вестник Московского университета. Серия 16. Биология. 2016;(1):6–13. Stefanova NA, Kolosova NG. Evolution of understanding of Alzheimer’s disease pathogenesis. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2016;(1):6–13.
  18. Кухарский М.С., Овчинников Р.К., Бачурин С.О. Молекулярные аспекты патогенеза и современные подходы к фармакологической коррекции болезни Альцгеймера. Журнал неврологии и психиатрии им. С.С. Корсакова. 2015;115(6):103–114. Kukharskiĭ MS, Ovchinnikov RK, Bachurin SO. Molecular aspects of the pathogenesis and current approaches to pharmacological correction of Alzheimer’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2015;115(6):103–114. doi: 10.17116/jnevro20151156103-114
  19. Lee JC, Kim SJ, Hong S, Kim Y. Diagnosis of Alzheimer’s disease utilizing amyloid and tau as fluid biomarkers. Exp Mol Med. 2019;51(5):1–10. doi: 10.1038/s12276-019-0250-2
  20. Glenner GG, Wong CW. Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun. 1984;122(3):1131–1135. doi: 10.1016/0006-291x(84)91209-9
  21. Scheuner D, Eckman C, Jensen M, et al. Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the Presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med. 1996;2(8):864–870. doi: 10.1038/nm0896-864
  22. Weller RO, Massey A, Kuo YM, Roher AE. Cerebral amyloid angiopathy: accumulation of A-beta in interstitial fluid drainage pathways in Alzheimer’s disease. Ann N Y Acad Sci. 2000;903:110–117. doi: 10.1111/j.1749-6632.2000.tb06356.x
  23. Mawuenyega KG, Sigurdson W, Ovod V, et al. Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science. 2010;330(6012):1774. doi: 10.1126/science.1197623
  24. Yoon SS, Jo SA. Mechanisms of amyloid-β peptide clearance: potential therapeutic targets for Alzheimer’s disease. Biomol Ther (Seoul). 2012;20(3):245–255. doi: 10.4062/biomolther.2012.20.3.245
  25. Wyss-Coray T, Loike JD, Brionne TC, et al. Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med. 2003;9(4):453–457. doi: 10.1038/nm838
  26. Shibata M, Yamada S, Kumar SR, et al. Clearance of Alzheimer’s amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest. 2000;106(12):1489–1499. doi: 10.1172/JCI10498
  27. Shirotani K, Tsubuki S, Iwata N, et al. Neprilysin degrades both amyloid peptides 1-40 and 1-42 most rapidly and efficiently among thiorphan- and phosphoramidon-sensitive endopeptidases. J Biol Chem. 2001;276(24):21895–21901. doi: 10.1074/jbc.M008511200
  28. Chesneau V, Vekrellis K, Rosner MR, Selkoe DJ. Purified recombinant insulin-degrading enzyme degrades amyloid beta-protein but does not promote its oligomerization. Biochem J. 2000;351(Pt 2):509–516.
  29. Yin KJ, Cirrito JR, Yan P, et al. Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-beta peptide catabolism. J Neurosci. 2006;26(43):10939–10948. doi: 10.1523/JNEUROSCI.2085-06.2006
  30. Kim MJ, Chae SS, Koh YH, et al. Glutamate carboxypeptidase II: an amyloid peptide-degrading enzyme with physiological function in the brain. FASEB J. 2010;24(11):4491–4502. doi: 10.1096/fj.09-148825
  31. Hensley K, Hall N, Subramaniam R, et al. Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J Neurochem. 1995;65(5):2146–2156. doi: 10.1046/j.1471-4159.1995.65052146.x
  32. Scheff SW, Price DA, Schmitt FA, Mufson EJ. Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging. 2006;27(10):1372–1384. doi: 10.1016/j.neurobiolaging.2005.09.012
  33. Григорьева В.Н., Машкович К.А. Ликворологические биомаркеры болезни Альцгеймера (обзор). Медицинский альманах. 2021;2(67):22–32. Grigoreva VN, Mashkovich KA. Cerebrospinal fluid biomarkers of Alzheimer’s disease (review). Medicinskij alʹmanah. 2021;2(67):22–32.
  34. Schöll M, Lockhart SN, Schonhaut DR, et al. PET imaging of Tau deposition in the aging human brain. Neuron. 2016;89(5):971–982. doi: 10.1016/j.neuron.2016.01.028
  35. Ossenkoppele R, Schonhaut DR, Schöll M, et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain. 2016;139(Pt 5):1551–1567. doi: 10.1093/brain/aww027
  36. Zhang CC, Xing A, Tan MS, et al. The role of MAPT in neurodegenerative diseases: genetics, mechanisms and therapy. Mol Neurobiol. 2016;53(7):4893–4904. doi: 10.1007/s12035-015-9415-8
  37. Абдуллаева Н., Алиева Г. Взаимосвязь тау-белка с патологией болезни Альцгеймера. Norwegian Journal of Development of the International Science. 2021;63-1:9–12. Abdullayeva N, Aliyeva G. The relationship of tau-protein with the pathology of Alzheimer’s disease. Norwegian Journal of Development of the International Science. 2021;63-1:9–12. doi: 10.24412/3453-9875-2021-63-1-9-12
  38. Alonso A, Zaidi T, Novak M, et al. Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc Natl Acad Sci U S A. 2001;98(12):6923–6928. doi: 10.1073/pnas.121119298
  39. Jin M, Shepardson N, Yang T, et al. Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc Natl Acad Sci U S A. 2011;108(14):5819–5824. doi: 10.1073/pnas.1017033108
  40. Counts SE, Ikonomovic MD, Mercado N, et al. Biomarkers for the early detection and progression of Alzheimer’s disease. Neurotherapeutics. 2017;14(1):35–53. doi: 10.1007/s13311-016-0481-z
  41. Van Harten AC, Wiste HJ, Weigand SD, et al. Detection of Alzheimer’s disease amyloid beta 1-42, p-tau, and t-tau assays. Alzheimers Dement. 2022;18(4):635–644. doi: 10.1002/alz.12406
  42. Frederiksen KS, Nielsen TR, Appollonio I, et al. Biomarker counseling, disclosure of diagnosis and follow-up in patients with mild cognitive impairment: a European Alzheimer’s disease consortium survey. Int J Geriatr Psychiatry. 2021;36(2):324–333. doi: 10.1002/gps.5427
  43. Vlassenko AG, McCue L, Jasielec MS, et al. Imaging and cerebrospinal fluid biomarkers in early preclinical Alzheimer disease. Ann Neurol. 2016;80(3):379–387. doi: 10.1002/ana.24719
  44. Stomrud E, Minthon L, Zetterberg H, et al. Longitudinal cerebrospinal fluid biomarker measurements in preclinical sporadic Alzheimer’s disease: a prospective 9-year study. Alzheimers Dement (Amst). 2015;1(4):403–411. doi: 10.1016/j.dadm.2015.09.002
  45. Shaw LM, Vanderstichele H, Knapik-Czajka M, et al. Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol. 2009;65(4):403–413. doi: 10.1002/ana.21610
  46. Palmqvist S, Mattsson N, Hansson O. Cerebrospinal fluid analysis detects cerebral amyloid-β accumulation earlier than positron emission tomography. Brain. 2016;139(Pt 4):1226–1236. doi: 10.1093/brain/aww015
  47. Skoog I, Davidsson P, Aevarsson O. et al. Cerebrospinal fluid beta-amyloid 42 is reduced before the onset of sporadic dementia: a population-based study in 85-year-olds. Dement Geriatr Cogn Disord. 2003;15(3):169–176. doi: 10.1159/000068478
  48. Kuhlmann J, Andreasson U, Pannee J, et al. CSF Aβ1-42 — an excellent but complicated Alzheimer’s biomarker — a route to standardisation. Clin Chim Acta. 2017;467:27–33. doi: 10.1016/j.cca.2016.05.014
  49. Gravina SA, Ho L, Eckman CB, et al. Amyloid beta protein (A beta) in Alzheimer’s disease brain. Biochemical and immunocytochemical analysis with antibodies specific for forms ending at A beta 40 or A beta 42(43). J Biol Chem. 1995;270(13):7013–7016. doi: 10.1074/jbc.270.13.7013
  50. Leissring MA, Farris W, Chang AY, et al. Enhanced proteolysis of beta-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron. 2003;40(6):1087–1093. doi: 10.1016/s0896-6273(03)00787-6
  51. Wegiel J, Wang KC, Imaki H, et al. The role of microglial cells and astrocytes in fibrillar plaque evolution in transgenic APP(SW) mice. Neurobiol Aging. 2001;22(1):49–61. doi: 10.1016/s0197-4580(00)00181-0
  52. Wilhelmus MM, Otte-Höller I, van Triel JJ, et al. Lipoprotein receptor-related protein-1 mediates amyloid-beta-mediated cell death of cerebrovascular cells. Am J Pathol. 2007;171(6):1989–1999. doi: 10.2353/ajpath.2007.070050
  53. Spies PE, Verbeek MM, Van Groen T, Claassen J. Reviewing reasons for the decreased CSF Abeta42 concentration in Alzheimer disease. Front Biosci (Landmark Ed). 2012;17(6), 2024–2034. doi: 10.2741/4035
  54. Bjerke M, Andreasson U, Rolstad S, et al. Subcortical vascular dementia biomarker pattern in mild cognitive impairment. Dement Geriar Cogn Disord. 2009;28(4):348–356. doi: 10.1159/000252773
  55. Slaets S, Le Bastard N, Theuns J, et al. Amyloid pathology influences aβ1-42 cerebrospinal fluid levels in dementia with Lewy bodies. J Alzheimers Dis. 2013;35(1):137–146. doi: 10.3233/JAD-122176
  56. Dorey A, Tholance Y, Vighetto A, et al. Association of cerebrospinal fluid prion protein levels and the distinction between Alzheimer disease and Creutzfeldt–Jakob disease. JAMA Neurol. 2015;72(3):267–275. doi: 10.1001/jamaneurol.2014.4068
  57. Koopman K, Le Bastard N, Martin JJ, et al. Improved discrimination of autopsy-confirmed Alzheimer’s disease (AD) from non-AD dementias using CSF P-tau (181P). Neurochem Int. 2009;55(4):214–218. doi: 10.1016/j.neuint.2009.02.017
  58. Sehlin D, Englund H, Simu B, et al. Large aggregates are the major soluble Aβ species in AD brain fractionated with density gradient ultracentrifugation. PLoS One. 2012;7(2):e32014. doi: 10.1371/jurnal.pone.0032014
  59. Dorey A, Perret-Liaudet A, Tholance Y, et al. Cerebrospinal fluid Aβ40 improves the interpretation of Aβ42 concentration for diagnosing Alzheimer’s disease. Front Neurol. 2015;6:247. doi: 10.3389/fneur.2015.00247
  60. Kanai M, Matsubara E, Isoe K, et al. Longitudinal study of cerebrospinal fluid levels of tau, A beta1-40, and A beta1-42(43) in Alzheimer’s disease: a study in Japan. Ann Neurol. 1998;44(1):17–26. doi: 10.1002/ana.410440108
  61. Dumurgier J, Schraen S, Gabelle A, et al. Cerebrospinal fluid amyloid-β 42/40 ratio in clinical setting of memory centers: a multicentric study. Alzheimers Res Ther. 2015;7(1):30. doi: 10.1186/s13195-015-0114-5
  62. Delaby C, Estellés T, Zhu N, et al. The Aβ1-42/Aβ1-40 ratio in CSF is more strongly associated to tau markers and clinical progression than Aβ1-42 alone. Alzheimers Res Ther. 2022;14(1):20. doi: 10.1186/s13195-022-00967-z
  63. Baldeiras I, Santana I, Leitão MJ, et al. Addition of the Aβ42/40 ratio to the cerebrospinal fluid biomarker profile increases the predictive value for underlying Alzheimer’s disease dementia in mild cognitive impairment. Alz Res Therapy. 2018;10(1):33. doi: 10.1186/s13195-018-0362-2
  64. Arai H, Terajima M, Miura M, et al. Tau in cerebrospinal fluid: a potential diagnostic marker in Alzheimer’s disease. Ann Neurol. 1995;38(4):649–652. doi: 10.1002/ana.410380414
  65. Olsson B, Lautner R, Andreasson U, et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol. 2016;15(7):673–684. doi: 10.1016/S1474-4422(16)00070-3
  66. Hesse C, Rosengren L, Andreasen N, et al. Transient increase in total tau but not phospho-tau in human cerebrospinal fluid after acute stroke. Neurosci Lett. 2001;297(3):187–190. doi: 10.1016/s0304-3940(00)01697-9
  67. Zetterberg H, Hietala MA, Jonsson M, et al. Neurochemical aftermath of amateur boxing. Arch Neurol. 2006;63(9):1277–1280. doi: 10.1001/archneur.63.9.1277
  68. Matsushita S, Miyakawa T, Maesato H, et al. Elevated cerebrospinal fluid tau protein levels in Wernicke’s encephalopathy. Alcohol Clin Exp Res. 2008;32(6):1091–1095. doi: 10.1111/j.1530-0277.2008.00671.x
  69. Skillbäck T, Rosén C, Asztely F, et al. Diagnostic performance of cerebrospinal fluid total tau and phosphorylated tau in Creutzfeldt–Jakob disease: results from the Swedish Mortality Registry. JAMA Neurol. 2014;71(4):476–483. doi: 10.1001/jamaneurol.2013.6455
  70. Blennow K, Wallin A, Agren H, et al. Tau protein in cerebrospinal fluid: a biochemical marker for axonal degeneration in Alzheimer disease? Mol Chem Neuropathol. 1995;26(3):231–245. doi: 10.1007/BF02815140
  71. Wallin AK, Blennow K, Zetterberg H, et al. CSF biomarkers predict a more malignant outcome in Alzheimer disease. Neurology. 2010;74(19):1531–1537. doi: 10.1212/WNL.0b013e3181dd4dd8
  72. Wang JZ, Grundke-Iqbal I, Iqbal K. Glycosylation of microtubule-associated protein tau: an abnormal posttranslational modification in Alzheimer’s disease. Nat Med. 1996;2(8):871–875. doi: 10.1038/nm0896-871
  73. Liu F, Iqbal K, Grundke-Iqbal I, et al. O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer’s disease. Proc Natl Acad Sci U S A. 2004;101(29):10804–10809. doi: 10.1073/pnas.0400348101
  74. Chung SH. Aberrant phosphorylation in the pathogenesis of Alzheimer’s disease. BMB Rep. 2009;42(8):467–474. doi: 10.5483/bmbrep.2009.42.8.467
  75. Billingsley ML, Kincaid RL. Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration. Biochem J. 1997;323(Pt 3):577–591. doi: 10.1042/bj3230577
  76. Pîrşcoveanu DFV, Pirici I, Tudorică V, et al. Tau protein in neurodegenerative diseases — a review. Rom J Morphol Embryol. 2017;58(4):1141–1150.
  77. Holper S, Watson R, Yassi N. Tau as a biomarker of neurodegeneration. Int J Mol Sci. 2022;23(13):7307. doi: 10.3390/ijms23137307
  78. Vos SJ, Xiong C, Visser PJ, et al. Preclinical Alzheimer’s disease and its outcome: a longitudinal cohort study. Lancet Neurol. 2013;12(10):957–965. doi: 10.1016/S1474-4422(13)70194-7
  79. Schoonenboom NS, Reesink FE, Verwey NA, et al. Cerebrospinal fluid markers for differential dementia diagnosis in a large memory clinic cohort. Neurology. 2012;78(1):47–54. doi: 10.1212/WNL.0b013e31823ed0f0
  80. Lleó A, Irwin DJ, Illán-Gala I, et al. A 2-Step cerebrospinal algorithm for the selection of frontotemporal lobar degeneration subtypes. JAMA Neurol. 2018;75(6):738–745. doi: 10.1001/jamaneurol.2018.0118
  81. Barthélemy NR, Bateman RJ, Hirtz C, et al. Cerebrospinal fluid phospho-tau T217 outperforms T181 as a biomarker for the differential diagnosis of Alzheimer’s disease and PET amyloid-positive patient identification. Alzheimers Res Ther. 2020;12(1):26. doi: 10.1186/s13195-020-00596-4
  82. Leuzy A, Janelidze S, Mattsson-Carlgren N, et al. Comparing the clinical utility and diagnostic performance of CSF P-Tau181, P-Tau217, and P-Tau231 assays. Neurology. 2021;97(17):e1681–e1694. doi: 10.1212/WNL.0000000000012727
  83. Janelidze S, Stomrud E, Smith R, et al. Cerebrospinal fluid p-tau217 performs better than p-tau181 as a biomarker of Alzheimer’s disease. Nat Commun. 2020;11(1):1683. doi: 10.1038/s41467-020-15436-0
  84. Ashton NJ, Benedet AL, Pascoal TA, et al. Cerebrospinal fluid p-tau231 as an early indicator of emerging pathology in Alzheimer’s disease. EBioMedicine. 2022;76:103836. doi: 10.1016/j.ebiom.2022.103836
  85. Ercan-Herbst E, Ehrig J, Schöndorf DC, et al. A post-translational modification signature defines changes in soluble tau correlating with oligomerization in early stage Alzheimer’s disease brain. Acta Neuropathol Commun. 2019;7(1):192. doi: 10.1186/s40478-019-0823-2
  86. Uhlmann RE, Rother C, Rasmussen J, et al. Acute targeting of pre-amyloid seeds in transgenic mice reduces Alzheimer-like pathology later in life. Nat Neurosci. 2020;23(12):1580–1588. doi: 10.1038/s41593-020-00737-w
  87. Kinney JW, Bemiller SM, Murtishaw AS, et al. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement. (N Y). 2018;4:575–590. doi: 10.1016/j.trci.2018.06.014
  88. Pak JH, Huang FL, Li J, et al. Involvement of neurogranin in the modulation of calcium/calmodulin-dependent protein kinase II, synaptic plasticity, and spatial learning: a study with knockout mice. Proc Natl Acad Sci U S A. 2000;97(21):11232–11237. doi: 10.1073/pnas.210184697
  89. Huang KP, Huang FL, Jäger T, et al. Neurogranin/RC3 enhances long-term potentiation and learning by promoting calcium-mediated signaling. J Neurosci. 2004;24(47):10660–10669. doi: 10.1523/JNEUROSCI.2213-04.2004
  90. Liu W, Lin H, He X, et al. Neurogranin as a cognitive biomarker in cerebrospinal fluid and blood exosomes for Alzheimer’s disease and mild cognitive impairment. Transl Psychiatry. 2020;10(1):125. doi: 10.1038/s41398-020-0801-2
  91. Portelius E, Zetterberg H, Skillbäck T, et al. Cerebrospinal fluid neurogranin: relation to cognition and neurodegeneration in Alzheimer’s disease. Brain. 2015;138(Pt 11):3373–3385. doi: 10.1093/brain/awv267
  92. Portelius E, Olsson B, Höglund K, et al. Cerebrospinal fluid neurogranin concentration in neurodegeneration: relation to clinical phenotypes and neuropathology. Acta Neuropathol. 2018;136(3):363–376. doi: 10.1007/s00401-018-1851-x
  93. Willemse EAJ, Sieben A, Somers C, et al. Neurogranin as biomarker in CSF is non-specific to Alzheimer’s disease dementia. Neurobiol Aging. 2021;108:99–109. doi: 10.1016/j.neurobiolaging.2021.08.002
  94. Yuan A, Rao MV, Veeranna RP, Nixon RA. Neurofilaments and neurofilament proteins in health and disease. Cold Spring Harb Perspect. Biol. 2017;9(4):a018309. doi: 10.1101/cshperspect.a018309
  95. Meeker KL, Butt OH, Gordon BA, et al. Cerebrospinal fluid neurofilament light chain is a marker of aging and white matter damage. Neurobiol Dis. 2022;166:105662. doi: 10.1016/j.nbd.2022.105662
  96. Idland AV, Sala-Llonch R, Borza T, et al. CSF neurofilament light levels predict hippocampal atrophy in cognitively healthy older adults. Neurobiol Aging. 2017;49:138–144. doi: 10.1016/j.neurobiolaging.2016.09.012
  97. Dhiman K, Gupta VB, Villemagne VL, et al. Cerebrospinal fluid neurofilament light concentration predicts brain atrophy and cognition in Alzheimer’s disease. Alzheimers Dement (Amst). 2020;12(1):e12005. doi: 10.1002/dad2.12005
  98. Dhiman K, Villemagne VL, Fowler C, et al. Cerebrospinal fluid neurofilament light predicts risk of dementia onset in cognitively healthy individuals and rate of cognitive decline in mild cognitive impairment: a prospective longitudinal study. Biomedicines. 2022;10(5):1045. doi: 10.3390/biomedicines10051045
  99. Lim B, Grøntvedt GR, Bathala P, et al. CSF neurofilament light may predict progression from amnestic mild cognitive impairment to Alzheimer’s disease dementia. Neurobiol Aging. 2021;107:78–85. doi: 10.1016/j.neurobiolaging.2021.07.013
  100. Delaby C, Alcolea D, Carmona-Iragui M, et al. Differential levels of neurofilament light protein in cerebrospinal fluid in patients with a wide range of neurodegenerative disorders. Sci Rep. 2020;10(1):9161. doi: 10.1038/s41598-020-66090-x
  101. Benedet AL, Milà-Alomà M, Vrillon A, et al. Differences between plasma and cerebrospinal fluid glial fibrillary acidic protein levels across the Alzheimer disease continuum. JAMA Neurol. 2021;78(12):1471–1483. doi: 10.1001/jamaneurol.2021.3671
  102. Li D, Liu X, Liu T, et al. Neurochemical regulation of the expression and function of glial fibrillary acidic protein in astrocytes. Glia. 2020;68(5):878–897. doi: 10.1002/glia.23734
  103. Zhang Z, Ma Z, Zou W, et al. The appropriate marker for astrocytes: comparing the distribution and expression of three astrocytic markers in different mouse cerebral regions. Biomed Res. Int. 2019;2019:9605265. doi: 10.1155/2019/9605265
  104. Van Hulle C, Jonaitis EM, Betthauser TJ, et al. An examination of a novel multipanel of CSF biomarkers in the Alzheimer’s disease clinical and pathological continuum. Alzheimers Dement. 2021;17(3):431–445. doi: 10.1002/alz.12204
  105. Fukuyama R, Izumoto T, Fushiki S. The cerebrospinal fluid level of glial fibrillary acidic protein is increased in cerebrospinal fluid from Alzheimer’s disease patients and correlates with severity of dementia. Eur Neurol. 2001;46(1):35–38. doi: 10.1159/000050753
  106. Heimfarth L, Passos FRS, Monteiro BS, et al. Serum glial fibrillary acidic protein is a body fluid biomarker: a valuable prognostic for neurological disease — a systematic review. Int Immunopharmacol. 2022;107:108624. doi: 10.1016/j.intimp.2022.108624

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Nevzorova K.V., Shpilyukova Y.A., Shabalina А.A., Fedotova E.Y., Illarioshkin S.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».