A Genetic Perspective on Ischemic Stroke: Recent Advances and Future Directions
- Authors: Chandra Sekar P.1, Veerabathiran R.1
-
Affiliations:
- Chettinad Academy of Research and Education
- Issue: Vol 18, No 4 (2024)
- Pages: 55-67
- Section: Reviews
- URL: https://journals.rcsi.science/2075-5473/article/view/282504
- DOI: https://doi.org/10.17816/ACEN.1064
- ID: 282504
Cite item
Abstract
Objective. This narrative review aimed to explore the multifaceted nature of ischemic stroke (IS) and its underlying genetic factors, emphasize the role of genetics in early detection and prevention, and acknowledge the complex influences on stroke prevalence across various countries.
Methods. An extensive overview of the causes, mechanisms, and genetics of IS was conducted by reviewing several studies and recent findings. The role of specific genes in monogenic stroke disorders, implications of polygenic influences, recent advances in genetic evaluation, and methods for early IS detection were synthesized and discussed.
Results. IS was influenced by genetics, underlying medical conditions, and lifestyle. Specific genes, including NOTCH3, HTRA1, COL3A1, and mtDNA, are involved in monogenic stroke syndromes and predominantly affect younger populations. Polygenic disorders, studied using genome-wide association study and sequencing techniques, play a prominent role in susceptibility to IS. Genetic evaluation has become instrumental in risk prediction, influencing clinical practices and potential therapeutic interventions. Early detection methods, such as enhanced imaging techniques and blood biomarkers, are crucial for managing IS outcomes.
Conclusion. Ischemic stroke is a complex disorder with a significant global impact. Understanding its genetic basis promises to improve early detection and effectively establish preventative measures. Although genetic evaluation and innovative detection techniques offer promise, focusing on lifestyle modifications and managing underlying health conditions remains paramount for reducing the incidence and severity of IS. Continuous research and technological advancements are essential for developing personalized medical approaches and improving global healthcare strategies.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Praveen Kumar Chandra Sekar
Chettinad Academy of Research and Education
Author for correspondence.
Email: rkgenes@gmail.com
ORCID iD: 0009-0008-5346-9597
Chettinad Hospital and Research Institute, Dr. Sci (Med.), Human cytogenetics and genomics laboratory, Faculty of allied health sciences
India, Kelambakkam, Tamil NaduRamakrishnan Veerabathiran
Chettinad Academy of Research and Education
Email: rkgenes@gmail.com
ORCID iD: 0000-0002-9307-5428
Chettinad Hospital and Research Institute, Cand. Sci (Med.), Human cytogenetics and genomics laboratory, Faculty of allied health sciences
India, Kelambakkam, Tamil NaduReferences
- Bevan S., Traylor M., Adib-Samii P. et al. Genetic heritability of ischemic stroke and the contribution of previously reported candidate gene and genomewide associations. Stroke. 2012;43(12):3161–3167. doi: 10.1161/STROKEAHA.112.665760
- Tadi P., Lui F. Acute stroke. Treasure Island; 2023.
- GBD 2016 Stroke Collaborators. Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(5):439–458. doi: 10.1016/S1474-4422(19)30034-1
- Zhou M., Wang H., Zeng X. et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;394(10204):1145–1158. doi: 10.1016/S0140-6736(19)30427-1
- GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021;20(10):795–820. doi: 10.1016/S1474-4422(21)00252-0
- Falcone G.J., Malik R., Dichgans M., Rosand J. Current concepts and clinical applications of stroke genetics. Lancet Neurol. 2014;13(4):405–418. doi: 10.1016/S1474-4422(14)70029-8
- Ilinca A., Samuelsson S., Piccinelli P. et al. A stroke gene panel for wholeexome sequencing. Eur. J. Hum. Genet. 2019;27(2):317–324. doi: 10.1038/s41431-018-0274-4
- Chen W., Sinha B., Li Y. et al. Monogenic, polygenic, and microRNA markers for ischemic stroke. Mol. Neurobiol. 2019;56(2):1330–1343. doi: 10.1007/s12035-018-1055-3
- Razvi S.S., Bone I. Single gene disorders causing ischaemic stroke. J. Neurol. 2006;253(6):685–700. doi: 10.1007/s00415-006-0048-8
- Fox C.S., Polak J.F., Chazaro I. et al. Genetic and environmental contributions to atherosclerosis phenotypes in men and women: heritability of carotid intima-media thickness in the Framingham Heart Study. Stroke. 2003;34(2):397–401. doi: 10.1161/01.str.0000048214.56981.6f
- Pu L., Wang L., Zhang R. et al. Projected global trends in ischemic stroke incidence, deaths and disability-adjusted life years from 2020 to 2030. Stroke. 2023;54(5):1330–1339. doi: 10.1161/STROKEAHA.122.040073
- Kaur D., Bansal R.P., Uppal A. A comparative analysis of diagnostic imaging in acute ischaemic stroke. Chettinad Health City Med J. 2023;12(2):3–8. doi: 10.24321/2278.2044.202320
- Aggarwal A., Aggarwal P., Khatak M., Khatak S. Cerebral ischemic stroke: sequels of cascade. Int. J. Pharma. Bio. Sci. 2010;1(3):1–24.
- Lyaker M.R., Tulman D.B., Dimitrova G.T. et al. Arterial embolism. Int. J. Crit. Illn. Inj. Sci. 2013;3(1):77–87. doi: 10.4103/2229-5151.109429
- Guo Y., Li P., Guo Q. et al. Pathophysiology and biomarkers in acute ischemic stroke — a review. Trop. J. Pharm. Res. 2014;12(6):1097. doi: 10.4314/tjpr.v12i6.35
- Wu Q.J., Tymianski M. Targeting NMDA receptors in stroke: new hope in neuroprotection. Mol. Brain. 2018;11(1):15. doi: 10.1186/s13041-018-0357-8
- Rama R., García Rodríguez J.C. Excitotoxicity and oxidative stress in acute ischemic stroke. In: García Rodríguez J.C. (ed.) Acute ischemic stroke. [Internet]. InTech; 2012. P. 30–58.
- Rutten J.W., Haan J., Terwindt G.M. et al. Interpretation of NOTCH3 mutations in the diagnosis of CADASIL. Expert. Rev. Mol. Diagn. 2014;14(5):593–603. doi: 10.1586/14737159.2014.922880
- Wang M.M. CADASIL. Handb. Clin. Neurol. 2018;148:733–743.
- Pan A.P., Potter T., Bako A. et al. Lifelong cerebrovascular disease burden among CADASIL patients: analysis from a global health research network. Front. Neurol. 2023;14:1203985. doi: 10.3389/fneur.2023.1203985
- Oide T., Nakayama H., Yanagawa S. et al. Extensive loss of arterial medial smooth muscle cells and mural extracellular matrix in cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL). Neuropathology. 2008;28(2):132–142. doi: 10.1111/j.1440-1789.2007.00864.x
- Hara K., Shiga A., Fukutake T. et al. Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease. N. Engl. J. Med. 2009;360(17):1729–1739. doi: 10.1056/NEJMoa0801560
- Clausen T., Kaiser M., Huber R., Ehrmann M. HTRA proteases: regulated proteolysis in protein quality control. Nat. Rev. Mol. Cell. Biol. 2011;12(3):1521–1562. doi: 10.1038/nrm3065
- Todorovic V., Rifkin D.B. LTBPs, more than just an escort service. J. Cell. Biochem. 2012;113(2):410–418. doi: 10.1002/jcb.23385
- Hara K., Shiga A., Fukutake T. Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease. N. Engl. J. Med. 2009;360(17):1729–1739.
- Malfait F., Francomano C., Byers P. et al. The 2017 international classification of the Ehlers–Danlos syndromes. Am. J. Med. Genet. C. Semin. Med. Genet. 2017;175(1):8–26. doi: 10.1002/ajmg.c.31552
- Huang K.W., Liu T.C., Liang R.Y. et al. Structural basis for overhang excision and terminal unwinding of DNA duplexes by TREX1. PLoS Biol. 2018;16(5):e2005653. doi: 10.1371/journal.pbio.2005653
- Stam A.H., Kothari P.H., Shaikh A. et al. Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations. Brain. 2016;139(11):2909–2922. doi: 10.1093/brain/aww217
- Winkler D.T., Lyrer P., Probst A. et al. Hereditary systemic angiopathy (HSA) with cerebral calcifications, retinopathy, progressive nephropathy, and hepatopathy. J. Neurol. 2008;255(1):77–88. doi: 10.1007/s00415-008-0675-3
- Richards A., van den Maagdenberg A.M., Jen J.C. et al. C-terminal truncations in human 3'-5' DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nat. Genet. 2007;39(9):1068–1070. doi: 10.1038/ng2082
- Kothari P.H., Kolar G.R., Jen J.C. et al. TREX1 is expressed by microglia in normal human brain and increases in regions affected by ischemia. Brain Pathol. 2018;28(6):806–821. doi: 10.1111/bpa.12626
- Kim B.J., Kim J.S. Ischemic stroke subtype classification: an asian viewpoint. J. Stroke. 2014;16(1):8–17. doi: 10.5853/jos.2014.16.1.8
- Craven L., Alston C.L., Taylor R.W., Turnbull D.M. Recent advances in mitochondrial disease. Annu. Rev. Genomics Hum. Genet. 2017;18:257–275. doi: 10.1146/annurev-genom-091416-035426
- El-Hattab A.W., Adesina A.M., Jones J., Scaglia F. MELAS syndrome: clinical manifestations, pathogenesis, and treatment options. Mol. Genet. Metab. 2015;116(1-2):4–12. doi: 10.1016/j.ymgme.2015.06.004
- Kowalska M., Piekut T., Prendecki M. et al. Mitochondrial and nuclear DNA oxidative damage in physiological and pathological aging. DNA Cell. Biol. 2020;39(8):1410–1420. doi: 10.1089/dna.2019.5347
- Rahman S., Copeland W.C. POLG-related disorders and their neurological manifestations. Nat. Rev. Neurol. 2019;15(1):40–52. doi: 10.1038/s41582-018-0101-0
- Zhang Z., Liu M., He J. et al. Maternally inherited coronary heart disease is associated with a novel mitochondrial tRNA mutation. BMC Cardiovasc. Disord. 2019;19(1):293. doi: 10.1186/s12872-019-01284-4
- Irani F., Kasmani R. Hereditary hemorrhagic telangiectasia: fatigue and dyspnea. CMAJ. 2009;180(8):839. doi: 10.1503/cmaj.081212
- Franchini M., Frattini F., Crestani S., Bonfanti C. Novel treatments for epistaxis in hereditary hemorrhagic telangiectasia: a systematic review of the clinical experience with thalidomide. J. Thromb. Thrombolysis. 2013;36(3):355–357. doi: 10.1007/s11239-012-0840-5
- McDonald J., Bayrak-Toydemir P., Pyeritz R.E. Hereditary hemorrhagic telangiectasia: an overview of diagnosis, management, and pathogenesis. Genet. Med. 2011;13(7):607–616. doi: 10.1097/GIM.0b013e3182136d32
- Jerkic M., Sotov V., Letarte M. Oxidative stress contributes to endothelial dysfunction in mouse models of hereditary hemorrhagic telangiectasia. Oxid. Med. Cell. Longev. 2012;2012:686972. doi: 10.1155/2012/686972
- Vignali D.A., Kuchroo V.K. IL-12 family cytokines: immunological playmakers. Nat. Immunol. 2012;13(8):722–728. doi: 10.1038/ni.2366
- Yang J., Ma K., Zhang C. et al. Burns impair blood-brain barrier and mesenchymal stem cells can reverse the process in mice. Front. Immunol. 2020;11:578879. doi: 10.3389/fimmu.2020.578879
- Dinarello C.A. Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol. 2009;27:519–550. doi: 10.1146/annurev.immunol.021908.132612
- Fu Y., Yan Y. Emerging role of immunity in cerebral small vessel disease. Front. Immunol. 2018;9:67. doi: 10.3389/fimmu.2018.00067
- Scheller J., Chalaris A., Schmidt-Arras D., Rose-John S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta. 2011;1813(5):878–888. doi: 10.1016/j.bbamcr.2011.01.034
- Scheller J., Grötzinger J., Rose-John S. Updating interleukin-6 classic- and trans-signaling. Signal Transduction. 2006;6(4):240–259. doi: 10.1002/SITA.200600086
- Rincon M. Interleukin-6: from an inflammatory marker to a target for inflammatory diseases. Trends Immunol. 2012;33(11):571–577. doi: 10.1016/j.it.2012.07.003
- Cui G., Wang H., Li R. et al. Polymorphism of tumor necrosis factor alpha (TNF-alpha) gene promoter, circulating TNF-alpha level, and cardiovascular risk factor for ischemic stroke. J. Neuroinflammation. 2012;9:235. doi: 10.1186/1742-2094-9-235
- Mekinian A., Tamouza R., Pavy S. et al. Functional study of TNF-α promoter polymorphisms: literature review and meta-analysis. Eur. Cytokine Netw. 2011;22(2):88–102. doi: 10.1684/ecn.2011.0285
- Pan A.P., Potter T., Bako A. et al. Lifelong cerebrovascular disease burden among CADASIL patients: analysis from a global health research network. Front. Neurol. 2023;14:1203985. doi: 10.3389/fneur.2023.1203985
- Pfeiffer D., Chen B., Schlicht K. et al. Genetic imbalance is associated with functional outcome after ischemic stroke. Stroke. 2019;50(2):298–304. doi: 10.1161/STROKEAHA.118.021856
- Ekkert A., Šliachtenko A., Grigaitė J. et al. Ischemic stroke genetics: what is new and how to apply it in clinical practice? Genes. (Basel). 2021;13(1):48. doi: 10.3390/genes13010048
- Rao S., Yao Y., Bauer D.E. Editing GWAS: experimental approaches to dissect and exploit disease-associated genetic variation. Genome Med. 2021;13(1):41. doi: 10.1186/s13073-021-00857-3
- Markus H.S., Mäkelä K.M., Bevan S. et al. Evidence HDAC9 genetic variant associated with ischemic stroke increases risk via promoting carotid atherosclerosis. Stroke. 2013;44(5):1220–1225. doi: 10.1161/STROKEAHA.111.000217
- Lee T.H., Ko T.M., Chen C.H. et al. Identification of PTCSC3 as a novel locus for large‐vessel ischemic stroke: a genome-wide association study. J. Am. Heart Assoc. 2016;5(3):e003003. doi: 10.1161/JAHA.115.003003
- NINDS Stroke Genetics Network (SiGN), International Stroke Genetics Consortium (ISGC). Loci associated with ischaemic stroke and its subtypes (SiGN): a genome-wide association study. Lancet Neurol. 2016;15(2):174–184. doi: 10.1016/S1474-4422(15)00338-5
- Ilinca A., Martinez-Majander N., Samuelsson S. et al. Whole-exome sequencing in 22 young ischemic stroke patients with familial clustering of stroke. Stroke. 2020;51(4):1056–1063. doi: 10.1161/STROKEAHA.119.027474
- Ilinca A., Puschmann A., Putaala J. et al. Updated stroke gene panels: rapid evolution of knowledge on monogenic causes of stroke. Eur. J. Hum. Genet. 2023;31(2):239–242. doi: 10.1038/s41431-022-01207-6
- Scott R.M., Smith E.R. Moyamoya disease and moyamoya syndrome. N. Engl. J. Med. 2009;360(12):1226–1237. doi: 10.1056/NEJMra0804622
- Guey S., Tournier-Lasserve E., Hervé D., Kossorotoff M. Moyamoya disease and syndromes: from genetics to clinical management. Appl. Clin. Genet. 2015;8:49–68. doi: 10.2147/TACG.S42772
- Castori M., Voermans N.C. Neurological manifestations of Ehlers–Danlos syndrome(s): a review. Iran J. Neurol. 2014;13(4):190–208.
- Rodan L.H., Mishra N., Yau I. et al. Expanding the spectrum of methylmalonic acid-induced pallidal stroke: first reported case of metabolic globus pallidus stroke in transcobalamin II deficiency. JIMD Rep. 2013;11:7–11. doi: 10.1007/8904_2013_215
- Mishra V., Banerjee A., Gandhi A.B. et al. Stroke and Fabry disease: a review of literature. Cureus. 2020;12(12):e12083. doi: 10.7759/cureus.12083
- Feldt-Rasmussen U. Fabry disease and early stroke. Stroke Res. Treat. 2011;2011: 615218. doi: 10.4061/2011/615218
- Kang J., Ko Y., Park J.H. et al. Effect of blood pressure on 3-month functional outcome in the subacute stage of ischemic stroke. Neurology. 2012;79(20):2018–2024. doi: 10.1212/WNL.0b013e3182749eb8
- Edwards J.D., Jacova C., Sepehry A.A. et al. A quantitative systematic review of domain-specific cognitive impairment in lacunar stroke. Neurology. 2013;80(3):315–322. doi: 10.1212/WNL.0b013e31827deb85
- Arboix A., Milian M., Oliveres M. et al. Impact of female gender on prognosis in type 2 diabetic patients with ischemic stroke. Eur. Neurol. 2006;56(1):6–12. doi: 10.1159/000094249
- Arboix A., Font A., Garro C. et al. Recurrent lacunar infarction following a previous lacunar stroke: a clinical study of 122 patients. J. Neurol. Neurosurg. Psychiatry. 2007;78(12):1392–1394. doi: 10.1136/jnnp.2007.119776
- Krishnamoorthy S., Khoo C.W., Lim H.S. et al. Prognostic role of plasma von Willebrand factor and soluble E-selectin levels for future cardiovascular events in a 'real-world' community cohort of patients with atrial fibrillation. Eur. J. Clin. Invest. 2013;43(10):1032–1038. doi: 10.1111/eci.12140
- Kishore A., Vail A., Majid A. et al. Detection of atrial fibrillation after ischemic stroke or transient ischemic attack: a systematic review and meta-analysis. Stroke. 2014;45(2):520–526. doi: 10.1161/STROKEAHA.113.003433
- Mishra A., Malik R., Hachiya T. et al. Stroke genetics informs drug discovery and risk prediction across ancestries. Nature. 2022;611(7934):115–123. doi: 10.1038/s41586-022-05165-3
- Neumann J.T., Riaz M., Bakshi A. et al. Predictive performance of a polygenic risk score for incident ischemic stroke in a healthy older population. Stroke. 2021;52(9):2882–2891. doi: 10.1161/STROKEAHA.120.033670
- Debette S., Markus H.S. Stroke genetics: discovery, insight into mechanisms, and clinical perspectives. Circ. Res. 2022;130(8):1095–1111. doi: 10.1161/CIRCRESAHA.122.319950
- Arboix A., Alioc J. Cardioembolic stroke: clinical features, specific cardiac disorders and prognosis. Curr. Cardiol. Rev. 2010;6(3):150–161. doi: 10.2174/157340310791658730
- Bhagat R., Marini S., Romero J.R. Genetic considerations in cerebral small vessel diseases. Front. Neurol. 2023;14:1080168. doi: 10.3389/fneur.2023.1080168
- Kohne E. Hemoglobinopathies: clinical manifestations, diagnosis, and treatment. Dtsch. Ärztebl. Int. 2011;108(31-32):532–540. doi: 10.3238/arztebl.2011.0532
- Ng K.W.P., Loh P.K.L., Sharma V.K. Role of investigating thrombophilic disorders in young stroke. Stroke Res. Treat. 2011;2011:670138. doi: 10.4061/2011/670138
- Sajjadi M., Karami M., Amirfattahi R. et al. A promising method of enhancement for early detection of ischemic stroke. J. Res. Med. Sci. 2012;17(9):843–849.
- Bustamante A., López-Cancio E., Pich S. et al. Blood biomarkers for the early diagnosis of stroke: the stroke-chip study. Stroke. 2017;48(9):2419–2425. doi: 10.1161/STROKEAHA.117.017076
