Glymphatic System Assessment Using DTI-ALPS in Age-Dependent Neurodegenerative Diseases
- Authors: Liaskovik A.A.1, Konovalov R.N.1, Shpilyukova Y.A.1, Nevzorova K.V.1, Moskalenko A.N.1, Fedotova E.Y.1, Krotenkova M.V.1
-
Affiliations:
- Research Center of Neurology
- Issue: Vol 18, No 3 (2024)
- Pages: 42-49
- Section: Original articles
- URL: https://journals.rcsi.science/2075-5473/article/view/269314
- DOI: https://doi.org/10.17816/ACEN.1127
- ID: 269314
Cite item
Abstract
Introduction. Dysfunction of the glymphatic system glymphatic system of the brain is considered a pathogenetic factor in some age-dependent neurodegenerative diseases, including Alzheimer's disease (AD), dementia with Lewy bodies (DLB), Parkinson's disease (PD), and normal pressure hydrocephalus (NPH). The innovative method for calculating DTI-ALPS (Diffusion Tensor Image Analysis ALong the Perivascular Space) allows non-invasive assessment of the glymphatic system status using magnetic resonance imaging (MRI).
The aim of the study is to compare DTI-ALPS in patients with AD, DLB, PD, and NPH and to evaluate its potential use as a biomarker of the glymphatic system status in these diseases.
Materials and methods. The study included 116 subjects: 32 patients with AD, 15 patients with DLB, 31 patients with PD, 11 patients with NPH, and 27 healthy volunteers. Cognitive testing was performed for patients in the main groups using the Montreal Cognitive Assessment (MoCA) score. All subjects underwent diffusion tensor imaging (DTI) of the brain. DTI-ALPS was then calculated.
Results. DTI-ALPS index significantly differed across groups (p < 0.001). Patients with AD, DLB, and NPH had a significantly lower DTI-ALPS index on both sides compared to the PD group and healthy volunteers (p < 0.01). Analysis of the entire sample showed a direct correlation between MoCA score and DTI-ALPS index (p < 0.05).
Conclusion. This is the first comparison of DTI-ALPS across such a broad range of age-dependent neurodegenerative diseases. Since our DTI-ALPS results were comparable to previously reported data, we believe that this parameter can be used as an indirect marker of the glymphatic system status.
Full Text
##article.viewOnOriginalSite##About the authors
Alina A. Liaskovik
Research Center of Neurology
Author for correspondence.
Email: lyaskovik@neurology.ru
ORCID iD: 0000-0001-8062-0784
postgraduate student, Radiology department, Institute of Clinical and Preventive Neurology
Russian Federation, MoscowRodion N. Konovalov
Research Center of Neurology
Email: krn_74@mail.ru
ORCID iD: 0000-0001-5539-245X
Cand. Sci. (Med.), senior researcher, Radiology department, Institute of Clinical and Preventive Neurology
Russian Federation, MoscowYulia A. Shpilyukova
Research Center of Neurology
Email: jshpilyukova@gmail.com
ORCID iD: 0000-0001-7214-583X
Cand. Sci. (Med.), researcher, 5th Neurological department with DNA laboratory, Institute of Clinical and Preventive Neurology
Russian Federation, MoscowKseniya V. Nevzorova
Research Center of Neurology
Email: nevzorova.k.v@neurology.ru
ORCID iD: 0009-0000-9148-0203
postgraduate student, 5th Neurological department with DNA laboratory, Institute of Clinical and Preventive Neurology
Russian Federation, MoscowAnna N. Moskalenko
Research Center of Neurology
Email: moskalenko@neurology.ru
ORCID iD: 0000-0003-3843-6435
postgraduate student, 5th Neurological department with DNA laboratory, Institute of Clinical and Preventive Neurology
Russian Federation, MoscowEkaterina Yu. Fedotova
Research Center of Neurology
Email: ekfedotova@gmail.com
ORCID iD: 0000-0001-8070-7644
Dr. Sci. (Med.), leading researcher, Head, 5th Neurological department with DNA laboratory, Institute of Clinical and Preventive Neurology
Russian Federation, MoscowMarina V. Krotenkova
Research Center of Neurology
Email: krotenkova_mrt@mail.ru
ORCID iD: 0000-0003-3820-4554
Dr. Sci. (Med), Head, Radiology department, Institute of Clinical and Preventive Neurology
Russian Federation, MoscowReferences
- Erkkinen M.G., Kim M.O., Geschwind M.D. Clinical neurology and epidemiology of the majorneurodegenerative diseases. Cold Spring Harb. Perspect. Biol. 2018;10(4):a033118. doi: 10.1101/cshperspect.a033118
- WHO. Global Status Report on the Public Health Response to Dementia. Geneva; 2021. 137 p.
- Iliff J., Wang M., Liao Y. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 2012;4(147):147ra111. doi: 10.1126/scitranslmed.3003748
- Jessen N.A., Munk A.S., Lundgaard I. et al. The glymphatic system: a beginner's guide. Neurochem. Res. 2015;40(12):2583–2599. doi: 10.1007/s11064-015-1581-6
- Buccellato F.R., D'Anca M., Serpente M. et al. The role of glymphatic system in Alzheimer's and Parkinson's disease pathogenesis. Biomedicines. 2022;10(9):2261. doi: 10.3390/biomedicines10092261
- Peng S., Liu J., Liang C. et al. Aquaporin-4 in glymphatic system, and its implication for central nervous system disorders. Neurobiol. Dis. 2023;179:106035. doi: 10.1016/j.nbd.2023.106035
- Reeves B.C., Karimy J.K., Kundishora A.J. et al. Glymphatic system impairment in Alzheimer's disease and idiopathic normal pressure hydrocephalus. Trends. Mol. Med. 2020;26(3):285–295. doi: 10.1016/j.molmed.2019.11.008
- Harrison I.F., Ismail O., Machhada A. et al. Impaired glymphatic function and clearance of tau in an Alzheimer's disease model. Brain. 2020;143(8):2576 –2593. doi: 10.1093/brain/awaa179
- Zhang Y., Zhang C., He X.Z. et al. Interaction between the glymphatic system and α-synuclein in Parkinson's disease. Mol. Neurobiol. 2023;60(4):2209–2222. doi: 10.1007/s12035-023-03212-2
- Buongiorno M., Marzal C., Fernandez M. et al. Altered sleep and neurovascular dysfunction in alpha-synucleinopathies: the perfect storm for glymphatic failure. Front. Aging Neurosci. 2023;15:1251755. doi: 10.3389/fnagi.2023.1251755
- Rasmussen M.K., Mestre H., Nedergaard M. The glymphatic pathway in neurological disorders. Lancet Neurol. 2018;17(11):1016–1024. doi: 10.1016/S1474-4422(18)30318-1
- Takizawa K., Matsumae M., Hayashi N. et al. The choroid plexus of the lateral ventricle as the origin of CSF pulsation is questionable. Neurol. Med. Chir. (Tokyo). 2018;58(1):23–31. doi: 10.2176/nmc.oa.2017-0117
- Taoka T., Masutani Y., Kawai H. et al. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer’s disease cases. Jpn. J. Radiol. 2017;35(4):172–178. doi: 10.1007/s11604-017-0617-z
- McKhann G.M., Knopman D.S., Chertkow H. et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging — Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7(3):263–269. doi: 10.1016/j.jalz.2011.03.005
- Nasreddine Z.S., Phillips N.A., Bédirian V. et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005;53(4):695–699. doi: 10.1111/j.1532-5415.2005.53221.x
- McKeith I.G., Boeve B.F., Dickson D.W. et al. Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology. 2017;89(1):88–100. doi: 10.1212/WNL.0000000000004058
- Hoehn M.M., Yahr M.D. Parkinsonism: onset, progression and mortality. Neurology. 1967;17(5):427–442. doi: 10.1212/wnl.17.5.427
- Postuma R.B., Berg D., Stern M. et al. MDS clinical diagnostic criteria for Parkinson's disease. Mov. Disord. 2015;30(12):1591–1601. doi: 10.1002/mds.26424
- Relkin N., Marmarou A., Klinge P. et al. Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery. 2005;57(3 Suppl):S4–S16. doi: 10.1227/01.neu.0000168185.29659.c5
- Folstein M.F., Folstein S.E., McHugh P.R. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975;12(3):189–198. doi: 10.1016/0022-3956(75)90026-6
- Yeh F.C., Panesar S., Fernandes D. et al. Population-averaged atlas of the macroscale human structural connectome and its network topology. Neuroimage. 2018;178:57–68. doi: 10.1016/j.neuroimage.2018.05.027
- Liang T., Chang F., Huang Z. et al. Evaluation of glymphatic system activity by diffusion tensor image analysis along the perivascular space (DTI-ALPS) in dementia patients. Br. J. Radiol. 2023;96(1146):20220315. doi: 10.1259/bjr.20220315
- Williams B.W., Mack W., Henderson V.W. Boston naming test in Alzheimer's disease. Neuropsychologia. 1989;27(8):1073–1079. doi: 10.1016/0028-3932(89)90186-3
- Wechsler D. Wechsler adult intelligence scale. San Antonio;1997.
- Tombaugh T.N. Trail Making Test A and B: normative data stratified by age and education. Arch. Clin. Neuropsychol. 2004;19(2):203–214. doi: 10.1016/S0887-6177(03)00039-8
- Zhang X., Wang Y., Jiao B. et al. Glymphatic system impairment in Alzheimer's disease: associations with perivascular space volume and cognitive function. Eur. Radiol. 2024;24(2):1314–1323. doi: 10.1007/s00330-023-10122-3
- Shen T., Yue Y., Ba F. et al. Diffusion along perivascular spaces as marker for impairment of glymphatic system in Parkinson's disease. NPJ Parkinsons Dis. 2022;8(1):174. doi: 10.1038/s41531-022-00437-1
- Bae Y.J., Kim J.M., Choi B.S. et al. Glymphatic function assessment in Parkinson's disease using diffusion tensor image analysis along the perivascular space. Parkinsonism Relat. Disord. 2023;114:105767. doi: 10.1016/j.parkreldis.2023.105767
- Bae Y.J., Choi B.S., Kim J.M. et al. Altered glymphatic system in idiopathic normal pressure hydrocephalus. Parkinsonism Relat. Disord. 2021;82:56–60. doi: 10.1016/j.parkreldis.2020.11.009
- Georgiopoulos C., Tisell A., Holmgren R.T. et al. Noninvasive assessment of glymphatic dysfunction in idiopathic normal pressure hydrocephalus with diffusion tensor imaging. J. Neurosurg. 2023;140(3):612–620. doi: 10.3171/2023.6.JNS23260
- Ringstad G. Glymphatic imaging: a critical look at the DTI-ALPS index. Neuroradiology. 2024;66(2):157–160. doi: 10.1007/s00234-023-03270-2
Supplementary files





