A Clinical Case of Corticospinal Tract Reorganization of Supplementary Motor Area in a Child After Acute Hypoxic Brain Injury

Cover Page

Cite item

Abstract

We present clinical observation of a 3-year-old child during recovery after acute hypoxic brain injury (freshwater drowning). Using diagnostic transcranial magnetic stimulation and magnetic resonance tractography with reconstruction of the corticospinal tract (CST) originated from the primary motor cortex and supplementary motor area (SMA), we determined that hypoxic brain injury induced activation of CST from the SMA. The period of reorganization was associated with the development of epileptiform patterns, that confirms the transient hyperexcitability of cortical neurons. Our findings indicate no recovery of motor function after acute hypoxic brain injury when CST originated only from SMA.

About the authors

Daria S. Kanshina

Research Institute of Emergency Pediatric Surgery and Traumatology

Author for correspondence.
Email: dr.d.kanshina@gmail.com
ORCID iD: 0000-0002-5142-9400

Cand. Sci. (Med.), Functional Diagnostics Doctor, Neurologist, Senior Researcher

Russian Federation, Moscow

Ilya A. Melnikov

Research Institute of Emergency Pediatric Surgery and Traumatology

Email: melnikov_ia@doctor-roshal.ru
ORCID iD: 0000-0002-2910-3711

Cand. Sci. (Med.), Radiologist, Senior Researcher, Head, CT-MRI Department

Russian Federation, Moscow

Maksim V. Ublinsky

Research Institute of Emergency Pediatric Surgery and Traumatology

Email: maxublinsk@mail.ru
ORCID iD: 0000-0002-4627-9874

Cand. Sci. (Biol.), Senior Researcher

Russian Federation, Moscow

Sergey S. Nikitin

Medical Genetic Research Center named after N.P. Bochkov

Email: nikitin-s@bk.ru
ORCID iD: 0000-0003-3292-2758

D. Sci. (Med.), Professor, Head, Department of Genetics of Neurological Diseases, Institute of Higher and Additional Professional Education

Russian Federation, Moscow

Svetlana A. Valliulina

Research Institute of Emergency Pediatric Surgery and Traumatology

Email: vsa64@mail.ru
ORCID iD: 0000-0002-1622-0169

D. Sci. (Med.), Professor, Director for Medical and Economic Issues, Head, Rehabilitation Department

Russian Federation, Moscow

Tolibdzhon A. Akhadov

Research Institute of Emergency Pediatric Surgery and Traumatology

Email: akhadov@mail.ru
ORCID iD: 0000-0002-3235-8854

D. Sci. (Med.), Professor, Head, Radiology Department

Russian Federation, Moscow

Maria A. Surma

National Medical and Surgical Center named after N.I. Pirogov

Email: maria_fnc@mail.ru
ORCID iD: 0000-0002-3692-2109

Neurologist, Doctor of Functional Diagnostics

Russian Federation, Moscow

References

  1. Tekgul H., Saz U., Yilmaz S., et.al Transcranial magnetic stimulation study for the investigation of corticospinal motor pathways in children with cerebral palsy. J. Clin. Neurosci. 2020;78:153–158. doi: 10.1016/j.jocn.2020.04.087
  2. Fujimoto H., Mihara M., Hattori N. et al. Cortical changes underlying balance recovery in patients with hemiplegic stroke. Neuroimage. 2014;85(Pt 1):547–554. doi: 10.1016/j.neuroimage.2013.05.014
  3. Konrad C., Jansen A., Henningsen H. et al. Subcortical reorganization in amyotrophic lateral sclerosis. Exp. Brain Res. 2006;172(3):361–369. doi: 10.1007/s00221-006-0352-7
  4. Rappaport M., Hall K.M., Hopkins K. et al. Disability rating scale for severe head trauma: coma to community. Arch. Phys. Med. Rehabil. 1982;63(3):118–123.
  5. Быкова В.И., Лукьянов В.И., Фуфаева Е.В. Диалог с пациентом при угнетении сознания после глубоких повреждений головного мозга. Консультативная психология и психотерапия. 2015;23(3):9–31. Bykova V.I., Lukyanov V.I., Fufaeva E.V. Dialogue with the patient in low consciousness state after severe brain damages. Counseling Psychology and Psychotherapy. 2015;23(3):9–31. doi: 10.17759/cpp.2015230302
  6. Barker A.T., Jalinous R., Freeston I.L. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985;1(8437):1106–1107. doi: 10.1016/s0140-6736(85)92413-4
  7. Rossini P.M., Burke D., Chen R. et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin. Neurophysiol. 2015;126(6):1071–1107. doi: 10.1016/j.clinph.2015.02.001
  8. Голубев В.Л., Меркулова Д.М., Зенкевич А.C. Постаноксический миоклонус (cиндром Лэнса–Эдамса). Журнал имени А.М. Вейна для практикующего врача «Лечение заболеваний нервной системы». 2012;(2): 36–38. Golubev V.L., Merkulova D.M., Zenkevich A.S. Post-anoxic myoclonus (Lance–Adams Syndrome). Journal named after A.M. Wayne for the practitioner "Treatment of diseases of the nervous system". 2012;(2):36–38.
  9. Staudt M., Grodd W., Gerloff C. et al. Two types of ipsilateral reorganization in congenital hemiparesis: a TMS and fMRI study. Brain. 2002;125(Pt 10):2222–2237. doi: 10.1093/brain/awf227
  10. Grunt S., Newman C.J., Saxer S. et al. The Mirror illusion increases motor cortex excitability in children with and without hemiparesis. Neurorehabil. Neural. Repair. 2017;31(3):280–289. doi: 10.1177/1545968316680483
  11. Ziemann U., Ishii K., Borgheresi A. et al. Dissociation of the pathways mediating ipsilateral and contralateral motor-evoked potentials in human hand and arm muscles. J. Physiol. 1999;518(Pt 3):895–906. doi: 10.1111/j.1469-7793.1999.0895p.x
  12. Baker K., Carlson H.L., Zewdie E. et al. Developmental remodelling of the motor cortex in hemiparetic children with perinatal stroke. Pediatr. Neurol. 2020;112:34–43. doi: 10.1016/j.pediatrneurol.2020.08.004
  13. Gallivan J.P., McLean D.A., Flanagan J.R. et al. Where one hand meets the other: limb-specific and action-dependent movement plans decoded from preparatory signals in single human frontoparietal brain areas. J. Neurosci. 2013;33(5):1991–2008. doi: 10.1523/JNEUROSCI.0541-12.2013
  14. Weinstein M., Green D., Rudisch J. et al. Understanding the relationship between brain and upper limb function in children with unilateral motor impairments: a multimodal approach. Eur. J. Paediatr. Neurol. 2018;22(1):143–154. doi: 10.1016/j.ejpn.2017.09.012

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. MR tractogram with CST reconstruction of patient S. on day 56 from injury.

Download (12KB)
3. Fig. 2. MR tractogram of patient S. in 6 months from injury. Predominance of CST originating from right SMA (blue).

Download (10KB)
4. Fig. 3. EEG monitoring in patient S. during the awake stage in 6 months from injury.

Download (2MB)
5. Fig. 4. Patient S., evaluation 1 year from injury.

Download (10KB)
6. Fig. 5. Sleep EEG in patient S. 1 year from injury.

Download (1MB)

Copyright (c) 2023 Kanshina D.S., Melnikov I.A., Ublinsky M.V., Nikitin S.S., Valliulina S.A., Akhadov T.A., Surma M.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies