Assessment of Mitochondrial Gene Activity in Dopaminergic Neuron Cultures Derived from Induced Pluripotent Stem Cells Obtained from Parkinson's Disease Patients

Cover Page

Cite item

Abstract

Introduction. Induced pluripotent stem cells (iPSCs) culturing allows modelling of neurodegenerative diseases in vitro and discovering its early biomarkers.

Our objective was to evaluate the activity of genes involved in mitochondrial dynamics and functions in genetic forms of Parkinson's disease (PD) using cultures of dopaminergic neurons derived from iPSCs.

Materials and methods. Dopaminergic neuron cultures were derived by reprogramming of the cells obtained from PD patients with SNCA and LRRK2 gene mutations, as well as from a healthy donor for control. Expression levels of 112 genes regulating mitochondrial structure, dynamics, and functions were assessed by multiplex gene expression profiling using NanoString nCounter custom mitochondrial gene expression panel.

Results. When comparing the characteristics of the neurons from patients with genetic forms of PD to those of the control, we observed variations in the gene activity associated with the mitochondrial respiratory chain, the tricarboxylic acid cycle enzyme activities, biosynthesis of amino acids, oxidation of fatty acids, steroid metabolism, calcium homeostasis, and free radical quenching. Several genes in the cell cultures with SNCA and LRRK2 gene mutations exhibited differential expression. Moreover, these genes regulate mitophagy, mitochondrial DNA synthesis, redox reactions, cellular detoxification, apoptosis, as well as metabolism of proteins and nucleotides.

Conclusions. The changes in gene network expression found in this pilot study confirm the role of disrupted mitochondrial homeostasis in the molecular pathogenesis of PD. These findings may contribute to the development of biomarkers and to the search for new therapeutic targets for the treatment of SNCA- and LRRK2-associated forms of the disease.

About the authors

Anna S. Vetchinova

Research Center of Neurology

Author for correspondence.
Email: annvet@mail.ru
ORCID iD: 0000-0003-3367-5373

Cand. Sci. (Biol.), Senior Researcher, Laboratory of Neurobiology and Tissue Engineering, Department of Molecular and Cellular Mechanisms of Neuroplasticity, Brain Science Institute

Russian Federation, Moscow

Marina R. Kapkaeva

Research Center of Neurology

Email: annaly-nevrologii@neurology.ru
ORCID iD: 0000-0002-2833-2897

Researcher, Laboratory of Neurobiology and Tissue Engineering, Department of Molecular and Cellular Mechanisms of Neuroplasticity, Brain Science Institute

Russian Federation, Moscow

Natalia M. Mudzhiri

Research Center of Neurology

Email: Mudzhirinm@gmail.com
ORCID iD: 0000-0002-3835-6622

Junior Researcher, Laboratory of Neuromorphology, Brain Science Institute

Russian Federation, Moscow

Sergey N. Illarioshkin

Research Center of Neurology

Email: annaly-nevrologii@neurology.ru
ORCID iD: 0000-0002-2704-6282

D. Sci. (Med.), Prof., RAS Full Member, Deputy Director for Science; Director, Brain Science Institute

Russian Federation, Moscow

References

  1. Dorsey E.R., Bloem B.R. The Parkinson pandemic — a call to action. JAMA Neurol. 2018;75:9–10. doi: 10.1001/jamaneurol.2017.3299
  2. Chaudhuri K.R., Healy D.G., Schapira A.H. Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol. 2006;5:235–2454. doi: 10.1016/S1474-4422(06)70373-8.
  3. MacDougall G., Brown L.Y., Kantor B. et al. The path to progress preclinical studies of age-related neurodegenerative diseases: a perspective on rodent and hiPSC-derived models. Mol. Ther. 2021;29(3):949–972. doi: 10.1016/j.ymthe.2021.01.001
  4. Geiss G.K., Bumgarner R.E., Birditt B. et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat. Biotechnol. 2008;26(3):317–325. doi: 10.1038/nbt1385.
  5. Gentien D., Piqueret-Stephan L., Henry E. et al. Digital multiplexed gene expression analysis of mRNA and miRNA from routinely processed and stained cytological smears: a proof-of-principle study. Acta Cytol. 2021;65(1):88–98. doi: 10.1159/000510174
  6. Vazquez-Prokopec G.M., Bisanzio D., Stoddard S.T. et al. Using GPS technology to quantify human mobility, dynamic contacts and infectious disease dynamics in a resource-poor urban environment. PLoS One. 2013;8(4):e58802. doi: 10.1371/journal.pone.0058802
  7. Geiss G.K., Bumgarner R.E., Birditt B. et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat. Biotechnol. 2008;26(3):317–325. doi: 10.1038/nbt1385
  8. Yu L., Bhayana S., Jacob N.K., Fadda P. Comparative studies of two generations of NanoString nCounter System. PLoS One. 2019;14(11):e0225505. doi: 10.1371/journal.pone.0225505
  9. Osellame L.D., Duchen M.R.. Defective quality control mechanisms and accumulation of damaged mitochondria link Gaucher and Parkinson diseases. Autophagy. 2013;9(10):1633–1635. doi: 10.4161/auto.25878
  10. Сухоруков В.С., Воронкова А.С., Литвинова Н.А. и др. Роль индивидуальных особенностей митохондриальной ДНК в патогенезе болезни Паркинсона. Генетика. 2020;56(4):392–400. Sukhorukov V.S., Voronkova A.S., Litvinova N.A. The role of individual features of mitochondrial DNA in the pathogenesis of Parkinson’s disease. Genetics. 2020;56(4):392–400. (In Russ.) doi: 10.31857/S0016675820040141
  11. Новосадова Е.В., Арсеньева Е.Л., Мануилова Е.С. и др. Исследование нейропротекторных свойств эндоканнабиноидов N-арахидоноил- дофамина и N-докозагексаеноилдофамина на нейрональных предшественниках человека, полученных из индуцированных плюрипотентных ство- ловых клеток человека. Биохимия. 2017;82(11):1732–1739. Novosadova E.V., Arsenyeva E.L., Manuilova E.S. et al. Neuroprotective properties of endocannabinoids N-arachidonoyl dopamine and N-docosahexaenoyl dopamine examined in neuronal precursors derived from human pluripotent stem cells. Biochemistry. 2017; 82: 1367–1372. (In Russ.) doi: 10.1134/S0006297917110141
  12. Novosadova E.V., Nenasheva V.V., Makarova I.V. et al. Parkinson's disease-associated changes in the expression of neurotrophic factors and their receptors upon neuronal differentiation of human induced pluripotent stem cells. J. Mol. Neurosci. 2020;70(4):514–521. doi: 10.1007/s12031-019-01450-5
  13. Abeti R., Abramov A.Y. Mitochondrial Ca2+ in neurodegenerative disorders. Pharmacol. Res. 2015;99:377–381. doi: 10.1016/j.phrs.2015.05.007
  14. Rothbauer U., Hofmann S., Mühlenbein N. et al. Role of the deafness dystonia peptide 1 (DDP1) in import of human Tim23 into the inner membrane of mitochondria. J. Biol. Chem. 2001;276(40):37327–37334. doi: 10.1074/jbc.M105313200
  15. Dolgacheva L., Fedotova E.I., Abramov A. et al. Alpha-synuclein and mitochondrial dysfunction in Parkinson's disease. Biological Membranes: Journal of Membrane and Cell Biology. 2017;34:4–14. doi: 10.1134/S1990747818010038
  16. Fernandez-Vizarra E., Zeviani M. Mitochondrial disorders of the OXPHOS system. FEBS Lett. 2021;595:1062–1106. doi: 10.1002/1873-3468.13995
  17. Kwong J.Q., Beal M.F., Manfredi G. The role of mitochondria in inherited neurodegenerative diseases. J. Neurochem. 2006;97(6):1659–1675. doi: 10.1111/j.1471-4159.2006.03990.x
  18. Allen S.P., Seehra R.S., Heath P.R. et al. Transcriptomic analysis of human astrocytes in vitro reveals hypoxia-induced mitochondrial dysfunction, modulation of metabolism, and dysregulation of the immune response. Int. J. Mol. Sci. 2020;21:8028. doi: 10.3390/ijms21218028
  19. Zhang Z., Yan J., Chang Y. et al. Hypoxia inducible factor-1 as a target for neurodegenerative diseases. Curr. Med. Chem. 2011;18(28):4335–4343. doi: 10.2174/092986711797200426
  20. de Brito O.M., Scorrano L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature. 2008;456(7222):605–610. doi: 10.1038/nature07534
  21. Olichon A., Baricault L., Gas N. et al. Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J. Biol. Chem. 2003;278(10):7743–7746. doi: 10.1074/jbc.C200677200
  22. Baker N., Patel J., Khacho M. Linking mitochondrial dynamics, cristae remodeling and supercomplex formation: how mitochondrial structure can regulate bioenergetics. Mitochondrion. 2019;49:259–268. doi: 10.1016/j.mito.2019.06.003
  23. Kim D., Hwang H.Y., Ji E.S. et al. Activation of mitochondrial TUFM ameliorates metabolic dysregulation through coordinating autophagy induction. Commun. Biol. 2021;4(1):1–17. doi: 10.1038/s42003-020-01566-0.
  24. Murata D., Arai K., Iijima M., Sesaki H. Mitochondrial division, fusion and degradation. J. Biochem. 2020;167(3):233–241. doi: 10.1093/jb/mvz106

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Decreased expression of some genes associated with mitochondrial dynamics and functions in neurons derived from patients with genetic form of PD.

Download (107KB)

Copyright (c) 2023 Vetchinova A.S., Kapkaeva M.R., Mudzhiri N.M., Illarioshkin S.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies