B Cell Depletion Therapy as a Cutting-Edge Treatment of Demyelinating Diseases of the Central Nervous System

Cover Page

Cite item

Full Text

Abstract

Demyelinating diseases of the central nervous system and multiple sclerosis in particular are a pressing issue for medical community and society as a whole. Deve- lopment and implementation of highly effective specific therapy significantly slow the disease progression and help maintain patients' quality of life and social participation. We analyzed pathogenic mechanisms of multiple sclerosis and other B cell-mediated diseases and reviewed therapeutic options for main disease stages.

About the authors

Taras O. Simaniv

Research Center of Neurology

Author for correspondence.
Email: simaniv@neurology.ru
ORCID iD: 0000-0001-7256-2668

Cand. Sci. (Med.), senior researcher, 6th Neurological department, Institute of Clinical and Preventive Neurology

Russian Federation, Moscow

Anna A. Belkina

Research Center of Neurology

Email: annabelkina333@gmail.com
ORCID iD: 0000-0001-9444-0960

resident in neurology

Russian Federation, Moscow

Maria N. Zakharova

Research Center of Neurology

Email: zakharova@neurology.ru
ORCID iD: 0000-0002-1072-9968
SPIN-code: 4277-2860

D. Sci. (Med.), principal researcher, Head, 6th Neurological department, Institute of Clinical and Preventive Neurology

Russian Federation, Moscow

References

  1. Papiri G., D’Andreamatteo G., Cacchiò G. et al. Multiple sclerosis: inflammatory and neuroglial aspects. Curr. Issues Mol. Biol. 2023; 45(2):1443–1470. doi: 10.3390/cimb45020094
  2. Kobelt G., Thompson A., Berg J. et al. New insights into the burden and costs of multiple sclerosis in Europe. Mult. Scler. 2017;23(8):1123–1136. doi: 10.1177/1352458517694432
  3. Бойко А.Н., Кукель Т.М., Лысенко М.А. и др. Клиническая эпидемиология рассеянного склероза в Москве. Описательная эпидемиология на примере популяции одного из округов города. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2013;113(10–2):8–14. Boiko A.N., Kukel’ T.M., Lysenko M.A. et al. Clinical epidemiology of multiple sclerosis in Moscow. Discriptive epidemiology in population of one region of Moscow. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2013;113(10-2):8–14.
  4. Sun Y., Yu H., Guan Y. Glia connect inflammation and neurodegeneration in multiple sclerosis. Neurosci. Bull. 2023;39(3):466–478. doi: 10.1007/s12264-023-01034-9
  5. Martinsen V., Kursula P. Multiple sclerosis and myelin basic protein: insights into protein disorder and disease. Amino Acids. 2022;54(1):99–109. doi: 10.1007/s00726-021-03111-7
  6. Hughes E.G., Orthmann-Murphy J.L., Langseth A.J., Bergles D.E. Myelin remodeling through experience-dependent oligodendrogenesis in the adult somatosensory cortex. Nat. Neurosci. 2018;21(5):696–706. doi: 10.1038/s41593-018-0121-5
  7. Neumann H., Medana I.M., Bauer J., Lassmann H. Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases. Trends Neurosci. 2002;25(6):313–319. doi: 10.1016/s0166-2236(02)02154-9
  8. Filippi M., Bar-Or A., Piehl F. et al. Multiple sclerosis. Nat. Rev. Dis. Primers. 201;4(1):43. doi: 10.1038/s41572-018-0041-4
  9. Baecher-Allan C., Kaskow B.J., Weiner H.L. Multiple sclerosis: mechanisms and immunotherapy. Neuron. 2018;97(4):742–768. doi: 10.1016/j.neuron.2018.01.021
  10. Pröbstel A.-K., Hauser S.L. Multiple sclerosis: B cells take center stage. J. Neuroophthalmol. 2018;38(2):251–258. doi: 10.1097/WNO.0000000000000642
  11. Eibel H., Kraus H., Sic H. et al. B cell biology: an overview. Curr. Allergy Asthma Rep. 2014;14(5):434. doi: 10.1007/s11882-014-0434-8
  12. Pieper K., Grimbacher B., Eibel H. B-cell biology and development. J. Allergy Clin. Immunol. 2013;131(4):959–971. doi: 10.1016/j.jaci.2013.01.046
  13. Blum J.S., Wearsch P.A., Cresswell P. Pathways of antigen processing. Annu. Rev. Immunol. 2013;31:443–473.10.1146/annurev-immunol-032712-095910
  14. Kurosaki T., Kometani K., Ise W. Memory B cells. Nat. Rev. Immunol. 2015;15(3):149–159. doi: 10.1038/nri3802
  15. Alexopoulos H., Biba A., Dalakas M.C. Anti-B-Cell Therapies in Autoimmune Neurological Diseases: Rationale and Efficacy Trials. Neurotherapeutics. 2016;13(1):20–33. doi: 10.1007/s13311-015-0402-6
  16. Adlowitz D.G. Barnard J., Biear J.N. et al. Expansion of activated peripheral blood memory B cells in rheumatoid arthritis, impact of B cell depletion therapy, and biomarkers of response. PLoS One. 2015;10(6):e0128269. doi: 10.1371/journal.pone.0128269
  17. Florou D., Katsara M., Feehan J. et al. Anti-CD20 agents for multiple sclerosis: spotlight on ocrelizumab and ofatumumab. Brain Sci. 2020;10(10):758. doi: 10.3390/brainsci10100758
  18. Rosser E.C., Mauri C. Regulatory B cells: origin, phenotype, and function. Immunity. 2015;42(4):607–612. doi: 10.1016/j.immuni.2015.04.005
  19. Comi G. Bar-Or A., Lassmann H. et al. Role of B cells in multiple sclerosis and related disorders. Ann. Neurol. 2021;89(1):13–23. doi: 10.1002/ana.25927
  20. Gharibi T., Babaloo Z., Hosseini A. et al. The role of B cells in the immunopathogenesis of multiple sclerosis. Immunology. 2020;160(4):325–335. doi: 10.1111/imm.13198
  21. Kinzel S., Lehmann-Horn K., Torke S. et al. Myelin-reactive antibodies initiate T cell-mediated CNS autoimmune disease by opsonization of endogenous antigen. Acta Neuropathol. 2016; 132(1):43–58. doi: 10.1007/s00401-016-1559-8
  22. de Bock L., Fraussen J., Villar L.M. et al. Anti-SPAG16 antibodies in primary progressive multiple sclerosis are associated with an elevated progression index. Eur. J. Neurol. 2016;23(4):722–728. doi: 10.1111/ene.12925
  23. Fraussen J., de Bock L., Somers V. B cells and antibodies in progressive multiple sclerosis: contribution to neurodegeneration and progression. Autoimmun. Rev. 2016;15(9):896–899. doi: 10.1016/j.autrev.2016.07.008
  24. Gharibi T., Hosseini A., Marofi F. et al. IL-21 and IL-21-producing T cells are involved in multiple sclerosis severity and progression. Immunol. Lett. 2019;216:12–20. doi: 10.1016/j.imlet.2019.09.003
  25. Li R., Rezk A., Healy L.M. et al. Cytokine-defined B cell responses as therapeutic targets in multiple sclerosis. Front. Immunol. 2015;6:626. doi: 10.3389/fimmu.2015.00626
  26. Korn T., Mitsdoerffer M., Croxford A. et al. IL-6 controls Th17 immunity in vivo by inhibiting the conversion of conventional T cells into Foxp3+ regulatory T cells. Proc. Natl. Acad. Sci. U. S. A. 2008;105(47):18460–18465. doi: 10.1073/pnas.0809850105
  27. Shen P., Fillatreau S. Antibody-independent functions of B cells: a focus on cytokines. Nat. Rev. Immunol. 2015;15(7):441–451. doi: 10.1038/nri3857
  28. Li R., Rezk A., Miyazaki Y. et al. Proinflammatory GM-CSF-producing B cells in multiple sclerosis and B cell depletion therapy. Sci. Transl. Med. 2015;7(310):310ra166. doi: 10.1126/scitranslmed.aab4176
  29. Wang A., Rojas O., Lee D., Gommerman J.L. Regulation of neuroinflammation by B cells and plasma cells. Immunol. Rev. 2021;299(1):45–60. doi: 10.1111/imr.12929
  30. Uccelli A., Aloisi F., Pistoia V. Unveiling the enigma of the CNS as a B-cell fostering environment. Trends Immunol. 2005;26(5):254–259. doi: 10.1016/j.it.2005.02.009
  31. Negron A., Stüve O., Forsthuber T.G. Ectopic lymphoid follicles in multiple sclerosis: centers for disease control? Front. Neurol. 2020;11:607766. doi: 10.3389/fneur.2020.607766
  32. Bell L., Lenhart A., Rosenwald A. et al. Lymphoid Aggregates in the CNS of Progressive multiple sclerosis patients lack regulatory T cells. Front. Immunol. 2019;10:3090. doi: 10.3389/fimmu.2019.03090
  33. Levy M., Mealy M.A. B-cell targeted treatments for neuromyelitis optica spectrum disorder: a focus on CD19 and CD20. ImmunoTargets Ther. 2021;10:325–331. doi: 10.2147/ITT.S255722
  34. Gorosito Serrán M., Fiocca Vernengo F., Beccaria C.G. et al. The regulatory role of B cells in autoimmunity, infections and cancer: perspectives beyond IL10 production. FEBS Lett. 2015;589(22):3362–3369. doi: 10.1016/j.febslet.2015.08.048
  35. Castillo J.J. Plasma cell disorders. Prim. Care. 2016;43(4):677–691. doi: 10.1016/j.pop.2016.07.002
  36. Clatworthy M.R. Targeting B cells and antibody in transplantation. Am. J. Transplant. 2011;11(7):1359–1367. doi: 10.1111/j.1600-6143.2011.03554.x
  37. Cheson B.D., Leonard J.P. Monoclonal antibody therapy for B-cell non-Hodgkin’s lymphoma. N. Engl. J. Med. 2008;359(6):613–626. doi: 10.1056/NEJMra0708875
  38. Bag-Ozbek A., Hui-Yuen J.S. Emerging B-cell therapies in systemic lupus erythematosus. Ther. Clin. Risk Manag. 2021;17:39–54. doi: 10.2147/TCRM.S252592
  39. Voge N.V., Alvarez E. Monoclonal antibodies in multiple sclerosis: present and future. Biomedicines. 2019;7(1): doi: 10.3390/biomedicines7010020
  40. Cree B.A.C., Bennett J.L., Kim H.J. et al. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet. 2019;394(10206):1352–1363. doi: 10.1016/S0140-6736(19)31817-3
  41. Ali F., Sharma K., Anjum V., Ali A. Inebilizumab-cdon: USFDA approved for the treatment of NMOSD (neuromyelitis optica spectrum disorder). Curr. Drug Discov. Technol. 2022;19(1):e140122193419. doi: 10.2174/1570163818666210519103001
  42. Frampton J.E. Inebilizumab: first approval. Drugs. 2020;80(12):1259–1264. doi: 10.1007/s40265-020-01370-4
  43. Zhao Y., Su H., Shen X. et al. The immunological function of CD52 and its targeting in organ transplantation. Inflamm. Res. 2017;66(7):571–578. doi: 10.1007/s00011-017-1032-8
  44. Coles A.J., Jones J.L., Vermersch P. et al. Autoimmunity and long-term safety and efficacy of alemtuzumab for multiple sclerosis: benefit/risk following review of trial and post-marketing data. Mult. Scler. 2022;28(5):842–846. doi: 10.1177/13524585211061335
  45. Klein C., Lammens A., Schäfer W. et al. Epitope interactions of monoclonal antibodies targeting CD20 and their relationship to functional properties. MAbs. 2013;5(1):22–33. doi: 10.4161/mabs.22771
  46. Kuijpers T.W., Bende R.J., Baars P.A. et al. CD20 deficiency in humans results in impaired T cell-independent antibody responses. J. Clin. Invest. 2010;120(1):214–22. doi: 10.1172/JCI40231
  47. Stathopoulos P., Dalakas M.C. Evolution of anti-B cell therapeutics in autoimmune neurological diseases. Neurotherapeutics. 2022;19(3):691–710. doi: 10.1007/s13311-022-01196-w
  48. Ciron J., Audoin B., Bourre B. et al. Recommendations for the use of Rituximab in neuromyelitis optica spectrum disorders. Rev. Neurol. (Paris). 2018;174(4):255–264. doi: 10.1016/j.neurol.2017.11.005
  49. Du F.H., Mills E.A., Mao-Draayer Y. Next-generation anti-CD20 monoclonal antibodies in autoimmune disease treatment. Auto Immun. Highlights. 2017;8(1):12. doi: 10.1007/s13317-017-0100-y
  50. Massacesi L., Mariottini A., Nicoletti F. Relevance of pathogenetic mechanisms to clinical effectiveness of B-cell-depleting monoclonal antibodies in multiple sclerosis. J. Clin. Med. 2022;11(15):4288. doi: 10.3390/jcm11154288
  51. Hewett K., Sanders D.B., Grove R.A. et al. Randomized study of adjunctive belimumab in participants with generalized myasthenia gravis. Neurology. 2018;90(16):e1425–e1434. doi: 10.1212/WNL.0000000000005323
  52. Burger J.A. Bruton tyrosine kinase inhibitors: present and future. Cancer J. 2019; 25(6):386–393. doi: 10.1097/PPO.0000000000000412
  53. Huang L., Jiang S., Shi Y. Tyrosine kinase inhibitors for solid tumors in the past 20 years (2001–2020). J. Hematol. Oncol. 2020;13(1):143. doi: 10.1186/s13045-020-00977-0
  54. Geladaris A., Torke S., Weber M.S. Bruton’s tyrosine kinase inhibitors in multiple sclerosis: pioneering the path towards treatment of progression? CNS Drugs. 2022;36(10):1019–1030. doi: 10.1007/s40263-022-00951-z
  55. Lotan I., McGowan R., Levy M. Anti-IL-6 therapies for neuromyelitis optica spectrum disorders: a systematic review of safety and efficacy. Curr. Neuropharmacol. 2021;19(2):220–232. doi: 10.2174/1570159X18666200429010825
  56. Le R.Q., Li L., Yuan W. et al. FDA approval summary: tocilizumab for treatment of chimeric antigen receptor T cell-induced severe or life-threatening cytokine release syndrome. Oncologist. 2018;23(8):943–947. doi: 10.1634/theoncologist.2018-0028
  57. Yamamura T., Kleiter I., Fujihara K. et al. Trial of satralizumab in neuromyelitis optica spectrum disorder. N. Engl. J. Med. 2019;381(22):2114–2124. doi: 10.1056/NEJMoa1901747
  58. Traboulsee A., Greenberg B.M., Bennett J.L. et al. Safety and efficacy of satralizumab monotherapy in neuromyelitis optica spectrum disorder: a randomised, double-blind, multicentre, placebo-controlled phase 3 trial. Lancet. Neurol. 2020;19(5):402–412. doi: 10.1016/S1474-4422(20)30078-8
  59. Everly J.J., Walsh R.C., Alloway R.R., Woodle E.S. Proteasome inhibition for antibody-mediated rejection. Curr. Opin. Organ Transplant. 2009;14(6):662–666. doi: 10.1097/MOT.0b013e328330f304
  60. Castillo-Trivino T., Braithwaite D., Bacchetti P., Waubant E. Rituximab in relapsing and progressive forms of multiple sclerosis: a systematic review. PLoS One. 2013;8(7): e66308. doi: 10.1371/journal.pone.0066308
  61. Hawker K., O’Connor P., Freedman M.S. et al. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann. Neurol. 2009;66(4):460–471. doi: 10.1002/ana.21867
  62. Chisari C.G., Sgarlata E., Arena S. et al. Rituximab for the treatment of multiple sclerosis: a review. J. Neurol. 2022;269(1):159–183. doi: 10.1007/s00415-020-10362-z
  63. Hauser S.L., Bar-Or A., Comi G. et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N. Engl. J. Med. 2017;376(3):221–234. doi: 10.1056/NEJMoa1601277
  64. Montalban X., Hauser S.L., Kappos L. et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N. Engl. J. Med. 2017;376(3):209–220. doi: 10.1056/NEJMoa1606468
  65. Sorensen P.S., Lisby S., Grove R. et al. Safety and efficacy of ofatumumab in relapsing-remitting multiple sclerosis: a phase 2 study. Neurology. 2014;82(7):573–581. doi: 10.1212/WNL.0000000000000125
  66. Hauser S.L., Bar-Or A., Cohen J.A. et al. Ofatumumab versus teriflunomide in multiple sclerosis. N. Engl. J. Med. 2020;383(6):546–557. doi: 10.1056/NEJMoa1917246
  67. Kira J.-I., Nakahara J., Sazonov D.V. et al. Effect of ofatumumab versus placebo in relapsing multiple sclerosis patients from Japan and Russia: phase 2 APOLITOS study. Mult. Scler. 2022;28(8):1229–1238. doi: 10.1177/13524585211055934
  68. Frisch E.S., Pretzsch R., Weber M.S. A milestone in multiple sclerosis therapy: monoclonal antibodies against CD20-Yet progress continues. Neurotherapeutics. 2021;18(3):1602–1622. doi: 10.1007/s13311-021-01048-z
  69. Bar-Or A., O’Brien S.M., Sweeney M.L. et al. Clinical perspectives on the molecular and pharmacological attributes of anti-CD20 therapies for multiple sclerosis. CNS Drugs. 2021;35(9):985–997. doi: 10.1007/s40263-021-00843-8
  70. Cencioni M.T., Mattoscio M., Magliozzi R. et al. B cells in multiple sclero- sis — from targeted depletion to immune reconstitution therapies. Nat. Rev. Neurol. 2021;17(7):399–414. doi: 10.1038/s41582-021-00498-5
  71. Pereira N.A., Chan K.F., Lin P.C., Song Z. The ‘less-is-more’ in therapeutic antibodies: Afucosylated anti-cancer antibodies with enhanced antibody-dependent cellular cytotoxicity. MAbs. 2018;10(5):693–711. doi: 10.1080/19420862.2018.1466767
  72. Steinman L., Fox E., Hartung H.P. et al. Ublituximab versus teriflunomide in relapsing multiple sclerosis. N. Engl. J. Med. 2022;387(8):704–714. doi: 10.1056/NEJMoa2201904
  73. Бойко О.В., Бойко А.Н., Яковлев П.А. и др. Результаты I фазы клинического исследования моноклонального антитела против CD20 (BCD-132): фармакокинетика, фармакодинамика и безопасность. Журнал неврологии и психиатрии им. C.C. Корсакова. 2019;119(10-2):87–95. Boyko O.V., Boyko A.N., Yakovlev P.A. et al. Results of a phase 1 clinical study of anti-CD20 monoclonal antibody (BCD-132): pharmacokinetics, pharmacodynamics and safety. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2019;119(10-2):87–95. doi: 10.17116/jnevro20191191087
  74. Спирин Н.Н., Власов Я.В., Захарова М.Н. и др. Новые возможности в терапии пациентов с рассеянным склерозом” (Резолюция совета экспертов 23 апреля 2022 года, Москва, АО «БИОКАД»). Журнал неврологии и психиатрии им. C.C. Корсакова. 2022;122(7-2):84–88. Spirin N.N., Vlasov Y.V., Zakharova M.N. et al. New opportunities in the treatment of patients with multiple sclerosis (Resolution of the Council of Experts on April 23, 2022, Moscow, JSC «BIOCAD»). Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2022;122(7-2):84–88. doi: 10.17116/jnevro202212207284

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. CD20 and epitopes.

Download (28KB)
3. Fig. 2. Comparison of monoclonal antibodies.

Download (125KB)

Copyright (c) 2023 Simaniv T.O., Belkina A.A., Zakharova M.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies