COVID-19 Features in Patients with Multiple Sclerosis: Main Approaches to Their Management, Treatment, and Vaccination

Cover Page

Cite item

Full Text

Abstract

The COVID-19 pandemic calls for correct and evidence-based decisions regarding management and treatment of patients with multiple sclerosis. Information on researches, clinical cases, and recommendations for treatment of such patients during the pandemic should be classified. We report COVID-19 features in patients with multiple sclerosis, risk factors for infection and development of severe disease. We also describe management strategies for multiple sclerosis: from relapse treatment to the selection of disease-modifying therapies focusing on patient’s safety. We analyze the latest observational and comparative studies, clinical cases of multiple sclerosis patients vaccination and demyelinating disease onset after COVID-19 or vaccination.

About the authors

Valeriya A. Malko

Almazov National Medical Research Centre

Author for correspondence.
Email: malko_VA@almazovcentre.ru
ORCID iD: 0000-0003-2230-3750

postgraduate student, Department of neurology and psychiatry with the clinic, Medical Education Institute

Russian Federation, St. Petersburg

Gennady N. Bisaga

Almazov National Medical Research Centre

Email: bisaga_GN@almazovcentre.ru
ORCID iD: 0000-0002-1848-8775

D. Sci. (Med.), Professor, Department of neurology and psychiatry with the clinic, Medical Education Institute

Russian Federation, St. Petersburg

Mariya P. Topuzova

Almazov National Medical Research Centre

Email: topuzova_MP@almazovcentre.ru
ORCID iD: 0000-0002-0175-3085

Cand. Sci. (Med.), Associate Professor, Department of neurology and psychiatry with the clinic, Medical Education Institute, senior researcher, Research laboratory of new Coronavirus infection and postcovid syndrome of the world-class scientific center "Center for Personalized Medicine"

Russian Federation, St. Petersburg

Ivan K. Ternovykh

Almazov National Medical Research Centre

Email: Ternovykh_IK@almazovcentre.ru
ORCID iD: 0000-0002-0074-4021

assistant, Department of neurology and psychiatry with the clinic, Medical Education Institute

Russian Federation, St. Petersburg

Tatyana M. Alekseeva

Almazov National Medical Research Centre

Email: Alekseeva_TM@almvazovcentre.ru
ORCID iD: 0000-0002-4441-1165

D. Sci. (Med.), Associate Professor, Department of neurology and psychiatry with the clinic, Medical Education Institute

Russian Federation, St. Petersburg

References

  1. Colais P., Cascini S., Balducci M. et al. Impact of the COVID-19 pandemic on access to healthcare services amongst patients with multiple sclerosis in the Lazio region, Italy. Eur. J. Neurol. 2021;28(10):3403–3410. doi: 10.1111/ene.14879
  2. Safavi F., Nourbakhsh B., Azimi A.R. B-cell depleting therapies may affect susceptibility to acute respiratory illness among patients with multiple sclerosis during the early COVID-19 epidemic in Iran. Mult. Scler. Relat. Disord. 2020;43:102195. doi: 10.1016/j.msard.2020.102195
  3. Louapre C., Collongues N., Stankoff B. et al. Clinical characteristics and outcomes in patients with Coronavirus Disease 2019 and multiple sclerosis. JAMA Neurol. 2020;77(9):1079–1088. doi: 10.1001/jamaneurol.2020.2581
  4. Chaudhry F., Bulka H., Rathnam A.S. et al. COVID-19 in multiple sclerosis patients and risk factors for severe infection. J. Neurol. Sci. 2020;418:117147. doi: 10.1016/j.jns.2020.117147
  5. Zabalza A., Cárdenas-Robledo S., Tagliani P. et al. COVID-19 in multiple sclerosis patients: susceptibility, severity risk factors and serological response. Eur. J. Neurol. 2021;28(10):3384–3395. doi: 10.1111/ene.14690
  6. Parrotta E., Kister I., Charvet L. et al. COVID-19 outcomes in MS: observational study of early experience from NYU Multiple Sclerosis Comprehensive Care Center. Neurol. Neuroimmunol. Neuroinflamm. 2020;7(5):e835. doi: 10.1212/NXI.0000000000000835
  7. Sormani M.P., Schiavetti I., Carmisciano L. et al. COVID-19 severity in multiple sclerosis: putting data into context. Neurol. Neuroimmunol. Neuroinflamm. 2021;9(1):e1105. doi: 10.1212/NXI.0000000000001105
  8. Evangelou N., Garjani A., dasNair R. et al. Self-diagnosed COVID-19 in people with multiple sclerosis: a community-based cohort of the UK MS Register. J. Neurol. Neurosurg. Psychiatry. 2020;92(1):107–109. doi: 10.1136/jnnp-2020-324449
  9. Salter A., Fox R.J., Newsome S.D. et al. Outcomes and risk factors associated with SARS-CoV-2 infection in a North American registry of patients with multiple sclerosis. JAMA Neurol. 2021;78(6):699–708. doi: 10.1001/jamaneurol.2021.0688
  10. REDONE.br — Neuroimmunology Brazilian Study Group Focused on COVID-19 and MS. Incidence and clinical outcome of Coronavirus disease 2019 in a cohort of 11,560 Brazilian patients with multiple sclerosis. Mult. Scler. 2021:1352458520978354. doi: 10.1177/1352458520978354
  11. Oran D.P., Topol E.J. The proportion of SARS-CoV-2 infections that are asymptomatic : a systematic review. Ann. Intern. Med. 2021;174(5):655–662. doi: 10.7326/M20-6976
  12. Barzegar M., Mirmosayyeb O., Gajarzadeh M. et al. COVID-19 among patients with multiple sclerosis: a systematic review. Neurol. Neuroimmunol. Neuroinflamm. 2021;8(4):e1001. doi: 10.1212/NXI.0000000000001001
  13. van Kempen Z.L.E., Strijbis E.M.M., Al M.M.C.T. et al. SARS-CoV-2 antibodies in adult patients with multiple sclerosis in the Amsterdam MS Cohort. JAMA Neurol. 2021;78(7):880–882. doi: 10.1001/jamaneurol.2021.1364
  14. Sormani M.P., De Rossi N., Schiavetti I. et al. Disease-modifying therapies and coronavirus disease 2019 severity in multiple sclerosis. Ann. Neurol. 2021;89(4):780–789. doi: 10.1002/ana.26028
  15. Sormani M.P., Salvetti M., Labauge P. et al. DMTs and Covid-19 severity in MS: a pooled analysis from Italy and France. Ann. Clin. Transl. Neurol. 2021;8(8):1738–1744. doi: 10.1002/acn3.51408
  16. Klineova S., Harel A., Straus Farber R. et al. Outcomes of COVID-19 infection in multiple sclerosis and related conditions: one-year pandemic experience of the multicenter New York COVID-19 Neuroimmunology Consortium (NYCNIC). Mult. Scler. Relat. Disord. 2021;55:103153. doi: 10.1016/j.msard.2021.103153
  17. Zaki N., Alashwal H., Ibrahim S. Association of hypertension, diabetes, stroke, cancer, kidney disease, and high-cholesterol with COVID-19 disease severity and fatality: a systematic review. Diabetes Metab. Syndr. 2020;14(5):1133–1142. doi: 10.1016/j.dsx.2020.07.005
  18. Reder A.T., Centonze D., Naylor M.L. et al. COVID-19 in patients with multiple sclerosis: associations with disease-modifying therapies. CNS Drugs. 2021;35(3):317–330. doi: 10.1007/s40263-021-00804-1
  19. Citterio A., La Mantia L., Ciucci G. et al. Corticosteroids or ACTH for acute exacerbations in multiple sclerosis. Cochrane Database Syst. Rev. 2000;2000(4). doi: 10.1002/14651858.CD001331
  20. Топузова М.П., Алексеева Т.М., Чайковская А.Д. и др. Особенности ведения пациентов с неврологическими заболеваниями в период пандемии COVID-19. Артериальная гипертензия. 2020;26(4):447–461. Topuzova M.P., Alekseeva T.M., Chaikovskaya A.D. et al. The management of patients with neurological diseases during the COVID-19 pandemic. Arterial hypertension. 2020;26(4):447–461. (In Russ.) doi: 10.18705/1607-419X-2020-26-4-447-461
  21. Kieseier B.C. The mechanism of action of interferon-β in relapsing multiple sclerosis. CNS Drugs. 2011;25(6):491–502. doi: 10.2165/11591110-000000000-00000
  22. Jacobs L.D., Cookfair D.L., Rudick R.A. et al. Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Ann. Neurol. 1996;39(3):285–294. doi: 10.1002/ana.410390304
  23. La Mantia L., Di Pietrantonj C., Rovaris M. et al. Interferons-beta versus glatiramer acetate for relapsing-remitting multiple sclerosis. Cochrane Database Syst. Rev. 2016;2016(11):CD009333. doi: 10.1002/14651858.CD009333.pub3
  24. Newsome S.D., Kieseier B.C., Arnold D.L. et al. Subgroup and sensitivity analyses of annualized relapse rate over 2 years in the ADVANCE trial of peginterferon beta-1a in patients with relapsing-remitting multiple sclerosis. J. Neurol. 2016;263(9):1778–1787. doi: 10.1007/s00415-016-8182-4
  25. Berger J.R., Brandstadter R., Bar-Or A. COVID-19 and MS disease-modifying therapies. Neurol. Neuroimmunol. Neuroinflamm. 2020;7(4):e761. doi: 10.1212/NXI.0000000000000761
  26. Hung I.F., Lung K.C., Tso E.Y. et al. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet. 2020;395(10238):1695–1704. doi: 10.1016/S0140-6736(20)31042-4
  27. Ader F., Discovery French Trial Management Team. Protocol for the DisCoVeRy trial: multicentre, adaptive, randomised trial of the safety and efficacy of treatments for COVID-19 in hospitalised adults. BMJ Open. 2020;10(9):e041437. doi: 10.1136/ bmjopen-2020-041437
  28. Hauser S.L., Bar-Or A., Comi G. et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N. Engl. J. Med. 2017;376(3):221–234. doi: 10.1056/NEJMoa1601277
  29. Cross A.H., Naismith R.T. Established and novel disease modifying treatments in multiple sclerosis. J. Intern. Med. 2014;275(4):350–363. doi: 10.1111/joim.12203
  30. Comi G., Filippi M., Wolinsky J.S. European/Canadian multicenter, double-blind, randomized, placebo-controlled study of the effects of glatiramer acetate on magnetic resonance imaging — measured disease activity and burden in patients with relapsing multiple sclerosis. European/Canadian Glatiramer Acetate Study Group. Ann. Neurol. 2001;49(3):290–297.
  31. Khan O., Rieckmann P., Boyko A. et al. Three times weekly glatiramer acetate in relapsing-remitting multiple sclerosis. Ann. Neurol. 2013;73(6):705–713. doi: 10.1002/ana.23938
  32. Giovannoni G., Hawkes C., Lechner-Scott J. et al. The COVID-19 pandemic and the use of MS disease-modifying therapies. Mult. Scler. Relat. Disord. 2020;39:102073. doi: 10.1016/j.msard.2020.102073
  33. Fox R.J., Miller D.H., Phillips J.T. et al. Placebo controlled, phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N. Engl. J. Med. 2012;367:1087–1097. doi: 10.1056/NEJMoa1206328
  34. Magne D., Mézin F., Palmer G., Guerne P.A. The active metabolite of leflunomide, A77 1726, increases proliferation of human synovial fibroblasts in presence of IL-1beta and TNF-alpha. Inflamm. Res. 2006;55(11):469–475. doi: 10.1007/s00011-006-5196-x
  35. Paolicelli D., Manni A., Iafaldano A., Trojano M. Efcacy and safety of oral therapies for relapsing-remitting multiple sclerosis. CNS Drugs. 2020;34(1):65–92. doi: 10.1007/s40263-019-00691-7
  36. Vermersch P., Czlonkowska A., Grimaldi L.M. et al. Teriflunomide versus subcutaneous interferon beta-1a in patients with relapsing multiple sclerosis: a randomised, controlled phase 3 trial. Mult. Scler. J. 2014;20(6):705–716. doi: 10.1177/1352458513507821
  37. Gold R., Kappos L., Arnold D.L. et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N. Engl. J. Med. 2012;367(12):1098–1107. doi: 10.1056/NEJMoa1114287
  38. Xiong R., Zhang L., Li S. et al. Novel and potent inhibitors targeting DHODH are broad-spectrum antivirals against RNA viruses including newly-emerged coronavirus SARS-CoV-2. Protein Cell. 2020;11(10):723–739. doi: 10.1007/s13238-020-00768-w
  39. Cabreira V., Abreu P., Soares-Dos-Reis R. et al. Multiple sclerosis, disease-modifying therapies and COVID-19: a systematic review on immune response and vaccination recommendations. Vaccines (Basel). 2021;9(7):773. doi: 10.3390/vaccines9070773
  40. Bowen J.D., Brink J., Brown T.R. et al. COVID-19 in MS: initial observations from the Pacific Northwest. Neurol. Neuroimmunol. Neuroinflamm. 2020;7(5):e783. doi: 10.1212/NXI.0000000000000783
  41. Ciampi E., Uribe-San-Martin R., Cárcamo C. COVID-19 pandemic: the experience of a multiple sclerosis centre in Chile. Mult. Scler. Relat. Disord. 2020;42:102204. doi: 10.1016/j.msard.2020.102204
  42. Maghzi A.H., Houtchens M.K., Preziosa P. et al. COVID-19 in terifluno- mide-treated patients with multiple sclerosis. J. Neurol. 2020;267(10):2790–2796. doi: 10.1007/s00415-020-09944-8
  43. Xu Z., Zhang F., Sun F. et al. Dimethyl fumarate for multiple sclerosis. Cochrane Database Syst. Rev. 2015;2015(4). doi: 10.1002/14651858.CD011076.pub2
  44. Capone F., Ferraro E., Motolese F., Di Lazzaro V. COVID-19 in multiple sclerosis patients treated with dimethyl fumarate. J. Neurol. 2021; 268(9):3132-3134. doi: 10.1007/s00415-021-10446-4
  45. Mantero V., Abate L., Basilico P. et al. COVID-19 in dimethyl fumarate-treated patients with multiple sclerosis. J. Neurol. 2020;268:2023–2025. doi: 10.1007/s00415-020-10015-1
  46. Zheng C., Kar I., Chen C.K. et al. Multiple sclerosis disease-modifying therapy and the COVID-19 pandemic: implications on the risk of infection and future vaccination. CNS Drugs. 2020;34(9):879–896. doi: 10.1007/s40263-020-00756-y
  47. Calabresi P.A., Radue E.W., Goodin D. et al. Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): A double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2014;13(6):545–556. doi: 10.1016/S1474- 4422(14)70049-3
  48. La Mantia L., Tramacere I., Firwana B. et al. Fingolimod for relapsing-remitting multiple sclerosis. Cochrane Database Syst. Rev. 2016;2016(4):CD009371. doi: 10.1002/14651858.CD009371.pub2
  49. Хачанова Н.В., Бойко А.Н., Бахтиярова К.З. и др. Рекомендации экспертного совещания «Вторично-прогрессирующий рассеянный склероз: нерешенные вопросы и перспективы». Неврология, нейропсихиатрия, психосоматика. 2019;11(4):172–175. Khachanova N.V., Boyko A.N., Bakhtiyarova K.Z. et al. Recommendations from the Expert Meeting «Secondary progressive multiple sclerosis: unresolved issues and prospects». Neurology, neuropsychiatry, psychosomatics. 2019;11(4):172–175. (In Russ.).
  50. Habek M., Jakob Brecl G., Bašić Kes V. et al. Humoral immune response in convalescent COVID-19 people with multiple sclerosis treated with high-efficacy disease-modifying therapies: A multicenter, case-control study. J. Neuroimmunol. 2021;359:577696. doi: 10.1016/j.jneuroim.2021.577696
  51. Bsteh G., Dürauer S., Assar H. et al. Humoral immune response after COVID-19 in multiple sclerosis: a nation-wide Austrian study. Mult. Scler. 2021;27(14):2209–2218. doi: 10.1177/13524585211049391
  52. Conte W.L. Attenuation of antibody response to SARS-CoV-2 in a patient on ocrelizumab with hypogammaglobulinemia. Mult. Scler. Relat. Disord. 2020;44:102315. doi: 10.1016/j.msard.2020.102315
  53. Bollo L., Guerra T., Bavaro D.F. et al. Seroconversion and indolent course of COVID-19 in patients with multiple sclerosis treated with fingolimod and teriflunomide. J. Neurol. Sci. 2020;416:117011. doi: 10.1016/j.jns.2020.117011
  54. Foerch C., Friedauer L., Bauer B. et al. Severe COVID-19 infection in a patient with multiple sclerosis treated with fingolimod. Mult. Scler. Relat. Disord. 2020;42:102180. doi: 10.1016/j.msard.2020.102180
  55. Valencia-Sanchez C., Wingerchuk D.M. A fine balance: immunosuppression and immunotherapy in a patient with multiple sclerosis and COVID-19. Mult. Scler. Relat. Disord. 2020;42:102182. doi: 10.1016/j.msard.2020.102182
  56. Rimmer K., Farber R., Thakur K. et al. Fatal COVID-19 in an MS patient on natalizumab: a case report. Mult. Scler. J. Exp. Transl. Clin. 2020;6(3):2055217320942931. doi: 10.1177/2055217320942931
  57. Menge T., Dubey D., Warnke C. et al. Ocrelizumab for the treatment of relapsing-remitting multiple sclerosis. Exp. Rev. Neurother. 2016;16(10):1131–1139. doi: 10.1080/14737175.2016.1227242
  58. Montalban X., Hauser S.L., Kappos L. et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N. Engl. J. Med. 2017;376(3):209–220. doi: 10.1056/NEJMoa1606468
  59. Coles A.J., Twyman C.L., Arnold D.L. et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet. 2012;380(9856):1829–1839. doi: 10.1016/S0140-6736(12)61768-1
  60. Rommer P.S., Zettl U.K., Kieseier B. et al. Requirement for safety monitoring for approved multiple sclerosis therapies: an overview. Clin. Exp. Immunol. 2014;175(3):397–407. doi: 10.1111/cei.12206
  61. Касаткин Д.С, Cнирин Н.Н., Бойко А.Н., Власов Я.В. Унификация оценки побочных эффектов терапии препаратами, изменяющими течение рассеянного склероза. Журнал неврологии и психиатрии им. C.C. Корсакова. 2014;114(2-2):78–82. Kasatkin D., Spirin N., Boyko A., Vlasov Ya. Unification of the assessment of side effects of therapy with drugs that change the course of multiple sclerosis. Journal of Neurology and Psychiatry named after S.S. Korsakov. 2014;(2):78–82.
  62. Sahraian M.A., Azimi A., Navardi S. et al. Evaluation of the rate of COVID-19 infection, hospitalization and death among Iranian patients with multiple sclerosis. Mult. Scler. Relat. Disord. 2020;46:102472. doi: 10.1016/j.msard.2020.102472
  63. Попова Е.В. Клинический случай COVID-19 у пациента на терапии препаратом алемтузумаб. Медицинский совет. 2021;(19):148–152. Popova E.V. Clinical case of COVID-19 in a patient treated with alemtuzumab. Medical advice. 2021;19:148–152. doi: 10.21518/2079-701X-2021-19-148-152
  64. Iannetta M., Cesta N., Stingone C. et al. Mild clinical manifestations of SARS-CoV-2 related pneumonia in two patients with multiple sclerosis under treatment with ocrelizumab. Mult. Scler. Relat. Disord. 2020;45:102442. doi: 10.1016/j.msard.2020.102442
  65. Wurm H., Attfield K., Iversen A.K. et al. Recovery from COVID-19 in a B-cell-depleted multiple sclerosis patient. Mult. Scler. 2020;26(10):1261–1264. doi: 10.1177/1352458520943791
  66. Woo M.S., Steins D., Häußler V. et al. Control of SARS-CoV-2 infection in rituximab-treated neuroimmunological patients. J. Neurol. 2021;268(1):5–7. doi: 10.1007/s00415-020-10046-8
  67. Maillart E., Papeix C., Lubetzki C. et al. Beyond COVID-19: DO MS/NMO-SD patients treated with anti-CD20 therapies develop SARS-CoV2 antibodies? Mult. Scler. Relat. Disord. 2020;46:102482. doi: 10.1016/j.msard.2020.102482
  68. Thornton J.R., Harel A. Negative SARS-CoV-2 antibody testing following COVID-19 infection in two MS patients treated with ocrelizumab. Mult. Scler. Relat. Disord. 2020;44:102341. doi: 10.1016/j.msard.2020.102341
  69. Giovannoni G. Cladribine to treat relapsing forms of multiple sclerosis. Neurotherapeutics. 2017;14(4):874–887. doi: 10.1007/s13311-017-0573-4
  70. Gelibter S., Orrico M., Filippi M., Moiola L. COVID-19 with no antibody response in a multiple sclerosis patient treated with cladribine: implication for vaccination program? Mult. Scler. Relat. Disord. 2021;49:102775. doi: 10.1016/j.msard.2021.102775
  71. De Angelis M., Petracca M., Lanzillo R. et al. Mild or no COVID-19 symptoms in cladribine-treated multiple sclerosis: Two cases and implications for clinical practice. Mult. Scler. Relat. Disord. 2020;45:102452. doi: 10.1016/j.msard.2020.102452
  72. Celius E.G. Normal antibody response after COVID-19 during treatment with cladribine. Mult. Scler. Relat. Disord. 2020;46:102476. doi: 10.1016/j.msard.2020.102476
  73. Preziosa P., Rocca M.A., Nozzolillo A. et al. COVID-19 in cladribine-treated relapsing-remitting multiple sclerosis patients: a monocentric experience. J. Neurol. 2021;268(8):2697–2699. doi: 10.1007/s00415-020-10309-4
  74. Lafarge A., Mabrouki A., Yvin E. et al. Coronavirus disease 2019 in immunocompromised patients: a comprehensive review of coronavirus disease 2019 in hematopoietic stem cell recipients. Curr. Opin. Crit. Care. 2022;28(1):83–89. doi: 10.1097/MCC.0000000000000907
  75. Fernández-Ruiz M., Aguado J.M. Severe acute respiratory syndrome coronavirus 2 infection in the stem cell transplant recipient — clinical spectrum and outcome. Curr. Opin. Infect. Dis. 2021;34(6):654–662. doi: 10.1097/QCO.0000000000000790
  76. Disanto G., Sacco R., Bernasconi E. et al. Association of disease-modifying treatment and anti-CD20 infusion timing with humoral response to 2 SARS-CoV-2 vaccines in patients with multiple sclerosis. JAMA Neurol. 2021;78(12):1529–1531. doi: 10.1001/jamaneurol.2021.3609
  77. Achiron A., Mandel M., Dreyer-Alster S. et al. Humoral immune response in multiple sclerosis patients following PfizerBNT162b2 COVID19 vaccination: up to 6 months cross-sectional study. J. Neuroimmunol. 2021;361:577746. doi: 10.1016/j.jneuroim.2021.577746
  78. Buttari F., Bruno A., Dolcetti E. et al. COVID-19 vaccines in multiple sclerosis treated with cladribine or ocrelizumab. Mult. Scler. Relat. Disord. 2021;52:102983. doi: 10.1016/j.msard.2021.102983
  79. Khayat-Khoei M., Conway S., Rubinson D.A. et al. Negative anti-SARS-CoV-2 S antibody response following Pfizer SARS-CoV-2 vaccination in a patient on ocrelizumab. J. Neurol. 2021;268(10):3592–3594. doi: 10.1007/s00415-021-10463-3
  80. Chilimuri S., Mantri N., Gongati S. et al. COVID-19 vaccine failure in a patient with multiple sclerosis on ocrelizumab. Vaccines (Basel). 2021;9(3):219. doi: 10.3390/vaccines9030219
  81. Tillett R.L., Sevinsky J.R., Hartley P.D. et al. Genomic evidence for reinfection with SARS-CoV-2: a case study. Lancet Infect. Dis. 2021;21(1):52–58. doi: 10.1016/S1473-3099(20)30764-7
  82. Хачанова НВ, Тотолян НА, Власов ЯВ и др. Рекомендации по вакцинации пациентов с рассеянным склерозом от COVID-19. Неврология, нейропсихиатрия, психосоматика. 2021;13(2):157–161. Khachanova N.V., Totolyan N.A., Vlasov Ya.V. et al. COVID-19 vaccination guidelines for patients with multiple sclerosis. Neurology, Neuropsychiatry, Psychosomatics. 2021;13(2):157–161. doi: 10.14412/20742711-2021-2-157-161
  83. Pignolo A., Aprile M., Gagliardo C. et al. Clinical onset and multiple sclerosis relapse after SARS-CoV-2 infection. Neurol. Int. 2021;13(4):695–700. doi: 10.3390/neurolint13040066
  84. Moore L., Ghannam M., Manousakis G. A first presentation of multiple sclerosis with concurrent COVID-19 infection. eNeurologicalSci. 2021;22:100299. doi: 10.1016/j.ensci.2020.100299
  85. Palao M., Fernández-Díaz E., Gracia-Gil J. et al. Multiple sclerosis following SARS-CoV-2 infection. Mult. Scler. Relat. Disord. 2020;45:102377. doi: 10.1016/j.msard.2020.102377
  86. Yavari F., Raji S., Moradi F., Saeidi M. Demyelinating changes alike to multiple sclerosis: a case report of rare manifestations of COVID-19. Case Rep. Neurol. Med. 2020;2020:6682251. doi: 10.1155/2020/6682251
  87. Berrichi S., Bouayed Z., Berrajaa S. et al. Acute disseminated encephalomyelitis: a rare form of COVID-19’s neurotropism. Ann. Med. Surg. (Lond). 2021;71:102940. doi: 10.1016/j.amsu.2021.102940
  88. Ozgen Kenangil G., Ari B.C., Guler C., Demir M.K. Acute disseminated encephalomyelitis-like presentation after an inactivated coronavirus vaccine. Acta Neurol. Belg. 2021;121(4):1089–1091. doi: 10.1007/s13760-021-01699-x
  89. Cao L., Ren L. Acute disseminated encephalomyelitis after severe acute respiratory syndrome coronavirus 2 vaccination: a case report. Acta Neurol. Belg. 2022;122(3):793–795. doi: 10.1007/s13760-021-01608-2
  90. Wong P.F., Craik S., Newman P. et al. Lessons of the month 1: a case of rhombencephalitis as a rare complication of acute COVID-19. Clin. Med. 2020;20:293–299. doi: 10.7861/clinmed.2020-0182
  91. Utukuri P.S., Bautista A., Lignelli A., Moonis G. Possible acute disseminated encephalomyelitis related to severe acute respiratory syndrome coronavirus 2 infection. Am. J. Neuroradiol. 2020;41:E82–Е83. doi: 10.3174/ajnr.A6714
  92. Paterson R.W., Brown R.L., Benjamin L. et al. The emerging spectrum of COVID-19 neurology: сlinical, radiological and laboratory findings. Brain. 2020;143:3104–3120. doi: 10.1093/brain/awaa240
  93. Novi G., Rossi T., Pedemonte E. et al. Acute disseminated encephyalomyelitis after SARS-CoV-2 infection. Neurol. Neuroimmunol. Neuroinflamm. 2020;7:e797. doi: 10.1212/NXI.00000 00000000797
  94. Otluoglu G.D., Yener U., Demir M.K., Yilmaz B. Encephalomyelitis associated with COVID-19 infection: сase report. Br. J. Neurosurg. 2020:1–3. doi: 10.1080/02688697.2020.1787342
  95. McCuddy M., Kelkar P., Zhao Y., Wicklund D. Acute demyelinating encephalomyelitis (ADEM) in COVID-19 infection: a case series. Neurol. India. 2020;68(5):1192–1195. doi: 10.4103/0028-3886.299174
  96. de Ruijter N.S., Kramer G., Gons R.A.R., Hengstman G.J.D. Neuromyelitis optica spectrum disorder after presumed COVID-19 infection: a case report. Mult. Scler. Relat. Disord. 2020;46:102474. doi: 10.1016/j.msard.2020.102474
  97. Ghosh R., De K., Roy D. et al. A case of area postrema variant of neuromye- litis optica spectrum disorder following SARSCoV-2 infection. J. Neuroimmunol. 2020;350:577439. doi: 10.1016/j.jneuroim.2020.577439
  98. Batum M., Kisabay Ak A., Mavioğlu H. COVID-19 infection-induced neuromyelitis optica: a case report. Int. J. Neurosci. 2022;132(10):999–1004. doi: 10.1080/00207454.2020.1860036
  99. Toljan K., Amin M., Kunchok A., Ontaneda D. New diagnosis of multiple sclerosis in the setting of mRNA COVID-19 vaccine exposure. J. Neuroimmunol. 2022;362:577785. doi: 10.1016/j.jneuroim.2021.577785
  100. Khayat-Khoei M., Bhattacharyya S., Katz J. et al. COVID-19 mRNA vaccination leading to CNS inflammation: a case series. J. Neurol. 2022;269(3):1093–1106. doi: 10.1007/s00415-021-10780-7
  101. Havla J., Schultz Y., Zimmermann H. et al. First manifestation of multiple sclerosis after immunization with the Pfizer-BioNTech COVID-19 vaccine. J. Neurol. 2022;269(1):55–58. doi: 10.1007/s00415-021-10648-w
  102. Fujimori J., Miyazawa K., Nakashima I. Initial clinical manifestation of multiple sclerosis after immunization with the Pfizer-BioNTech COVID-19 vaccine. J. Neuroimmunol. 2021;361:577755. doi: 10.1016/j.jneuroim.2021.577755
  103. Voysey M., Clemens S.A.C., Madhi S.A. et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet. 2021;397(10269):98–111. doi: 10.1016/S0140-6736(20)32661-1
  104. Badrawi N., Kumar N., Albastaki U. Post COVID-19 vaccination neuromyelitis optica spectrum disorder: Case report & MRI findings. Radiol. Case Rep. 2021;16(12):3864–3867. doi: 10.1016/j.radcr.2021.09.033
  105. Permezel F., Borojevic B., Lau S., de Boer H.H. Acute disseminated encephalomyelitis (ADEM) following recent Oxford/AstraZeneca COVID-19 vaccination. Forensic Sci. Med. Pathol. 2022;18(1):74–79. doi: 10.1007/s12024-021-00440-7
  106. Rinaldi V., Bellucci G., Romano A. et al. ADEM after ChAdOx1 nCoV-19 vaccine: a case report. Mult. Scler. 2022;28(7):1151–1154. doi: 10.1177/13524585211040222
  107. Chen S., Fan X.R., He S. et al. Watch out for neuromyelitis optica spectrum disorder after inactivated virus vaccination for COVID-19. Neurol. Sci. 2021;42(9):3537–3539. doi: 10.1007/s10072-021-05427-4
  108. Cao L., Ren L. Acute disseminated encephalomyelitis after severe acute respiratory syndrome coronavirus 2 vaccination: a case report. Acta Neurol. Belg. 2022;122(3):793–795. doi: 10.1007/s13760-021-01608-2
  109. Ozgen Kenangil G., Ari B.C., Guler C., Demir M.K. Acute disseminated encephalomyelitis-like presentation after an inactivated coronavirus vaccine. Acta Neurol. Belg. 2021;121(4):1089–1091. doi: 10.1007/s13760-021-01699-x
  110. Fujikawa P., Shah F.A., Braford M. et al. Neuromyelitis optica in a healthy female after Severe Acute Respiratory Syndrome Coronavirus 2 mRNA-1273 vaccine. Cureus. 2021;13(9):e17961. doi: 10.7759/cureus.17961
  111. Shimizu M., Ogaki K., Nakamura R. et al. An 88-year-old woman with acute disseminated encephalomyelitis following messenger ribonucleic acid-based COVID-19 vaccination. eNeurologicalSci. 2021;25:100381. doi: 10.1016/j.ensci.2021.100381
  112. Kania K., Ambrosius W., Tokarz Kupczyk E., Kozubski W. Acute disseminated encephalomyelitis in a patient vaccinated against SARS-CoV-2. Ann. Clin. Transl. Neurol. 2021;8(10):2000–2003. doi: 10.1002/acn3.51447
  113. Patone M., Handunnetthi L., Saatci D. et al. Neurological complications after first dose of COVID-19 vaccines and SARS-CoV-2 infection. Nat. Med. 2021;27(12):2144–2153. doi: 10.1038/s41591-021-01556-7

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Malko V.A., Bisaga G.N., Topuzova M.P., Ternovykh I.K., Alekseeva T.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies