Role of Inflammatory Mediators, Growth Factors, and Osteodystrophy in Recurrent Lumbar Disk Herniation

Cover Page

Cite item

Full Text

Abstract

Introduction. Reintervention in patients with spinal disk herniation is shown to significantly decrease likelihood of favorable outcomes in the postoperative period. Thus, it is important to individually assess risk factors for and likelihood of spinal disk herniation recurrence for each patient, and choose a suitable surgical option.

Objective: to evaluate changes in the levels of immunoregulatory mediators in the blood serum and extracted spinal disc tissue of allegedly healthy individuals and patients with lumbar disk herniation relapses.

Materials and methods. We examined 60 patients. The control group included 19 patients with traumatic spinal cord injuries at the lumbar level. The main group included 41 patients with spinal disk herniation. Twenty-two individuals had primary herniation while 11 patients presented with single clinical and neurological relapses at the pre-operated lumbar level and 8 patients presented with recurrent relapses. Solid-phase enzyme immunoassay detected proinflammatory cytokines (interleukin-6, tumor necrosis factor-α), chemokines (interleukin-8, monocyte chemoattractant protein-1), growth factors (vascular endothelial growth factor, transforming growth factor-β1), and osteodestruction markers (osteoprogesterin, matrix metalloproteinase-8) in the blood serum and the extracted spinal disc tissue.

Results. We found that spinal disk destruction and chronic inflammation developed with both locally and generally elevating levels of proinflammatory cytokines/chemokines, growth factors, and matrix metalloproteinase 8.

Conclusion. The results emphasize the significance of local changes in the studied parameters to choose and plan personalized surgical treatment in patients with spinal disk herniation.

About the authors

Vladimir A. Chekhonatskiy

Russian Medical Academy of Continuous Professional Education

Author for correspondence.
Email: fax-1@yandex.ru
ORCID iD: 0000-0001-6155-1154

postgraduate student, Department of neurosurgery

Russian Federation, Moscow

Oleg N. Dreval

Russian Medical Academy of Continuous Professional Education

Email: odreval@nsi.ru
ORCID iD: 0000-0002-8944-9837

D. Sci. (Med.), Professor, Head, Department of neurosurgery

Russian Federation, Moscow

Aleksei V. Kuznetsov

Russian Medical Academy of Continuous Professional Education

Email: akuznetsov@nsi.ru
ORCID iD: 0000-0002-9487-6008

Cand. Sci. (Med.), Associate Professor, Department of neurosurgery

Russian Federation, Moscow

Andrey A. Chekhonatskiy

Saratov State Medical University named after V.I. Razumovsky

Email: fax-1@yandex.ru
ORCID iD: 0000-0003-3327-1483

D. Sci. (Med.), Head, Department of neurosurgery

Russian Federation, Saratov

Natalya B. Zakharova

Saratov State Medical University named after V.I. Razumovsky

Email: lipidgormon@mail.ru
ORCID iD: 0000-0003-0289-3562

D. Sci. (Med.), Professor, Department of clinical laboratory diagnostics

Russian Federation, Saratov

Elena A. Grishina

Russian Medical Academy of Continuous Professional Education

Email: ncmu@almazovcentre.ru
ORCID iD: 0000-0002-5621-8266

D. Sci. (Med.), Professor, Director, Research Institute of Molecular and Personalized Medicine

Russian Federation, Moscow

Aleksandr V. Gorozhanin

S.P. Botkin City Clinical Hospital

Email: agorozhanin@list.ru
ORCID iD: 0000-0002-3593-7034

Cand. Sci. (Med.), Head, Neurosurgery department No. 19

Russian Federation, Moscow

Vera V. Volna

S.P. Botkin City Clinical Hospital

Email: neurosurgeon-sidorenko@mail.ru

neurosurgeon, Neurosurgery department No. 19

Russian Federation, Moscow

References

  1. Древаль О.Н., Кузнецов А.В., Чехонацкий В.А. и др. Патогенетические аспекты и факторы риска развития рецидива грыжи диска поясничного отдела позвоночника: обзор литературы. Хирургия позвоночника. 2021;18(1):47–52. Dreval O.N., Kuznetsov A.V., Chekhonatskiy V.A. et al. Pathogenetic aspects and risk factors of lumbar disc herniation recurrence (review of the literature). Journal of Spine Surgery. 2021;18(1):47–52. doi: 10.14531/ss2021.1.47-52
  2. Чехонацкий В.А., Древаль О.Н., Кузнецов А.В. и др. Современные принципы лечения рецидивов грыж межпозвонкового диска поясничного отдела позвоночника. Саратовский научно-медицинский журнал. 2020;16(3):769–772. Chekhonatskiy V.A., Dreval O.N., Kuznetsov A.V. et al. Modern principles of treatment of recurrent herniation of the intervertebral disc of the lumbar spine. Saratov Journal of Medical Scientific Research. 2020;16(3):769–772.
  3. Nicholas S., Woojin Cho. Recurrent lumbar disc herniation: a review. Global Spine J. 2019;9(2):202–209. doi: 10.1177/2192568217745063
  4. Wang J., Markova D., Anderson D.G. et al. TNF-α and IL-1β promote a disintegrin-like and metalloprotease with thrombospondin type I motif-5-mediated aggrecan degradation through syndecan-4 in intervertebral disc. J. Biol. Chem. 2011;286:39738–39749. doi: 10.1074/jbc.M111.264549
  5. Bachmeier B.E., Nerlich A., Mittermaier N. et al. Matrix metalloproteinase expression levels suggest distinct enzyme roles during lumbar disc herniation and degeneration. Eur. Spine J. 2009;18:1573–1586. doi: 10.1007/s00586-009-1031-8
  6. Tchetina E.V., Markova G.A. Regulation of energy metabolism in the growth plate and osteoarthritic chondrocytes. Rheumatol. Int. 2018;38(11):1963–1974. doi: 10.1007/s00296-018-4103-4
  7. Altun I. Cytokine profile in degenerated painful intervertebral disc: variability with respect to duration of symptoms and type of disease. Spine J. 2016;16(7):857–861. doi: 10.1016/j.spinee.2016.03.019
  8. Bian Q., Ma L., Jain A. et al. Mechanosignaling activation of TGF-P maintains intervertebral disc homeostasis. Bone Res. 2017;5:1–14. doi: 10.1038/boneres.2017.8
  9. Zheng L., Cao Y., Ni S. et al. Ciliary parathyroid hormone signaling activates transforming growth factor-β to maintain intervertebral disc homeostasis during aging. Bone Res. 2018;6:21. doi: 10.1038/s41413-018-0022-y

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The range of МСР-1 levels in the blood serum (А) and the extracted spinal disc tissue (В).

Download (79KB)
3. Fig. 2. The range of TGF-β1 levels in the blood serum (А) and the extracted spinal disc tissue (В).

Download (72KB)
4. Fig. 3. The range of ММР-8 levels in the blood serum (А) and the extracted spinal disc tissue (В).

Download (67KB)

Copyright (c) 2023 Chekhonatskiy V.A., Dreval O.N., Kuznetsov A.V., Chekhonatskiy A.A., Zakharova N.B., Grishina E.A., Gorozhanin A.V., Volna V.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies