Molecular mechanisms of neuroprotective effects of thyroid hormones and their metabolites in acute brain ischemia

Cover Page

Cite item

Full Text

Abstract

As endovascular reperfusion advances and multimodal neuroimagimg is implemented, neuroprotection in ischemic stroke progresses to the next level. In the recent years, the focus of neuroprotection research has been gradually shifting towards the research of endogenous substances and their synthetic analogs. According to the available evidence, thyroid hormones (THs) and their metabolites are potentially effective neuroprotectors in brain ischemia.

Objective. To identify and classify TH neuroprotective effects in acute brain ischemia by analyzing contemporary data.

We studied and analyzed publications indexed in РubMed, SciElo, ScienceDirect, Scopus, Biomedical Data Journal, and eLibrary.

The molecular basis of TH effects includes genomic and non-genomic mechanisms aimed at mitochondrial activity regulation, neuro- and angiogenesis, axonal transport, cytoskeleton maintenance, and impact on ion channels as well as activation and expression of specific proteins. TH effects on the central nervous system can be classified into following clusters: influence on neuronal and glial metabolism, apoptosis modulation, neuroplasticity and angiogenesis, impact on hemostasis, and local and systemic immune response.

Conclusion. THs are multimodal and selective regulators of cellular processes that affect neuroplasticity and neuro-reintegration both in the brain ischemic zone and beyond it. Therefore, a promising research can cover THs and and their metabolites as cerebral cytoprotectors to improve functional outcomes of ischemic strokes.

About the authors

Dmitry A. Filimonov

V.K. Gusak Institute of Urgent and Reconstructive Surgery

Author for correspondence.
Email: neuro.dnmu@gmail.com
ORCID iD: 0000-0002-4542-6860

Cand. Sci. (Med.), Associate Professor, Head, Experimental Surgery Department, V.K. Gusak Institute of Urgent and Reparative Surgery

Russian Federation, Donetsk

Stanislav K. Yevtushenko

M. Gorky Donetsk National Medical University

Email: centerkramatorsk@gmail.com
ORCID iD: 0000-0001-5916-7970

D. Sci. (Med.), Professor, Department of Child and General Neurology, M. Gorky Donetsk National Medical University

Russian Federation, Donetsk

Anna A. Fedorova

V.K. Gusak Institute of Urgent and Reconstructive Surgery

Email: hannusyc@gmail.com
ORCID iD: 0000-0002-0937-328X

Cand. Sci. (Biol.), Senior Researcher, Department of Experimental Surgery, V.K. Gusak Institute of Urgent and Reparative Surgery

Russian Federation, Donetsk

References

  1. Feigin V.L., Nguyen G., Cercy K. et al. Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016. N. Engl. J. Med. 2018; 379(25): 2429–2437. doi: 10.1056/nejmoa1804492
  2. Kassebaum N.J., Arora M., Barber R.M. et al. Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016; 388(10053): 1603–1658. doi: 10.1016/S0140-6736(16)31460-X
  3. Nogueira R.G., Tsivgoulis G. Large vessel occlusion strokes after the DIRECT-MT and SKIP trials: is the alteplase syringe half empty or half full? Stroke. 2020; 51(10): 3182–3186. doi: 10.1161/STROKEAHA.120.030796
  4. Яхно Н.Н., Ткачева О.Н., Гаврилова С.И. и др. Комплексная междисциплинарная и межведомственная программа профилактики, раннего выявления, диагностики и лечения когнитивных расстройств у лиц пожилого и старческого возраста. Российский журнал гериатрической медицины. 2022; (1): 6–16. Yakhno N.N., Tkacheva O.N., Gavrilova S.I. et al. Comprehensive interdisciplinary and interdepartmental program for prevention, early detection, diagnosis and treatment of cognitive disorders in older and senile people. Russian Journal of Geriatric Medicine. 2022; (1): 6–16. (In Russ.) doi: 10.37586/2686-8636-1-2022-6-16
  5. Prezioso G., Giannini C., Chiarelli F. Effect of thyroid hormones on neurons and neurodevelopment. Horm. Res. Paediatr. 2018; 90(2): 73–81. doi: 10.1159/000492129
  6. Bradley D.J., Towle H.C., Young W.S. Spatial and temporal expression of alpha- and beta-thyroid hormone receptor mRNAs, including the beta 2-subtype, in the developing mammalian nervous system. J. Neurosci. 1992; 12(6): 2288–2302. doi: 10.1523/JNEUROSCI.12-06-02288.1992
  7. Wassner A.J., Brown R.S. Congenital hypothyroidism: recent advances. Curr. Opin. Endocrinol. Diabetes Obes. 2015; 22(5): 407–412. doi: 10.1097/MED.0000000000000181
  8. Van Trotsenburg P., Stoupa A., Léger J. et al. Congenital hypothyroidism: a 2020–2021 Consensus Guidelines Update — An ENDO-European Reference Network Initiative Endorsed by the European Society for Pediatric Endocrinology and the European Society for Endocrinology. Thyroid. 2021; 31(3): 387–419. doi: 10.1089/THY.2020.0333
  9. Di Liegro I. Thyroid hormones and the central nervous system of mammals (Review). Mol. Med. Rep. 2008; 1(3): 279–295. doi: 10.3892/mmr.1.3.279
  10. Wahlström G.M., Sjöberg M., Andersson M. et al. Binding characteristics of the thyroid hormone receptor homo- and heterodimers to consensus AGGTCA repeat motifs. Mol. Endocrinol. 1992; 6(7): 1013–1022. doi: 10.1210/MEND.6.7.1324417
  11. Jepsen K., Hermanson O., Onami T.M. et al. Combinatorial roles of the nuclear receptor corepressor in transcription and development. Cell. 2000; 102(6): 753–763. doi: 10.1016/S0092-8674(00)00064-7
  12. Chatonnet F., Flamant F., Morte B. A temporary compendium of thyroid hormone target genes in brain. Biochim. Biophys. Acta — Gene Regul. Mech. 2015; 1849(2): 122–129. doi: 10.1016/J.BBAGRM.2014.05.023
  13. Bernal J. Thyroid hormone regulated genes in cerebral cortex development. J. Endocrinol. 2017; 232(2): R83–R97. doi: 10.1530/JOE-16-0424
  14. Anderson G.W., Mariash C.N. Molecular aspects of thyroid hormone-regulated behavior. Horm. Brain Behav. 2017; 3: 111–129. doi: 10.1016/B978-0-12-803592-4.00048-1
  15. Talhada D., Santos C.R.A., Gonçalves I., Ruscher K. Thyroid hormones in the brain and their impact in recovery mechanisms after stroke. Front. Neurol. 2019; 10(OCT): 1103. doi: 0.3389/FNEUR.2019.01103/BIBTEX
  16. Yonkers M.A., Ribera A.B. Sensory neuron sodium current requires nongenomic actions of thyroid hormone during development. J. Neurophysiol. 2008; 100(5): 2719–2725. doi: 10.1152/jn.90801.2008
  17. Davis P.J., Mousa S.A., Lin H.Y. Nongenomic actions of thyroid hormone: The integrin component. Physiol. Rev. 2021; 101(1): 319–352. doi: 10.1152/PHYSREV.00038.2019/ASSET/IMAGES/LARGE/AJ-PREV200003F010.JPEG
  18. Martin J.V., Williams D.B., Fitzgerald R.M. et al. Thyroid hormonal modulation of the binding and activity of the GABAA receptor complex of brain. Neuroscience. 1996; 73(3): 705–713. doi: 10.1016/0306-4522(96)00052-8
  19. Cao J., Pan J., Lin H.Y. et al. L-thyroxine attenuates pyramidal neuron excitability in rat acute prefrontal cortex slices. Immunol. Endocr. Metab. Agents Med. Chem. 2012; 11(3): 152–156. doi: 10.2174/187152211796642828
  20. Liu B., Wang Z., Lin L. et al. Brain GABA+ changes in primary hypothyroidism patients before and after levothyroxine treatment: A longitudinal magnetic resonance spectroscopy study. NeuroImage Clin. 2020; 28: 102473. doi: 10.1016/J.NICL.2020.102473
  21. Wajner S.M., Maia A.L. New insights toward the acute non-thyroidal illness syndrome. Front. Endocrinol. (Lausanne). 2012; 3(JAN): 1–7. doi: 10.3389/fendo.2012.00008
  22. Lin H.Y., Tang H.Y., Davis F.B. et al. Nongenomic regulation by thyroid hormone of plasma membrane ion and small molecule pumps. Discov. Med. 2012; 14(76): 199–206.
  23. Mancini A., Di Segni C., Raimondo S. et al. Thyroid hormones, oxidative stress, and inflammation. Mediators Inflamm. 2016; 2016:6757154. doi: 10.1155/2016/6757154
  24. Araujo A.S.R., Seibel F.E.R., Oliveira U.O. et al. Thyroid hormone-induced haemoglobin changes and antioxidant enzymes response in erythrocytes. Cell Biochem. Funct. 2011; 29(5): 408–413. doi: 10.1002/cbf.1765
  25. Villanueva I., Alva-Sánchez C., Pacheco-Rosado J. The role of thyroid hormones as inductors of oxidative stress and neurodegeneration. Oxid. Med. Cell Longev. 2013; 2013: 218145. doi: 10.1155/2013/218145
  26. Głombik K., Detka J., Kurek A., Budziszewska B. Impaired brain energy metabolism: involvement in depression and hypothyroidism. Front. Neurosci. 2020; 14: 1239. doi: 10.3389/FNINS.2020.586939/BIBTEX
  27. Bauer M., Silverman D.H.S., Schlagenhauf F. et al. Brain glucose metabolism in hypothyroidism: a positron emission tomography study before and after thyroid hormone replacement therapy. J. Clin. Endocrinol. Metab. 2009; 94(8): 2922–2929. doi: 10.1210/JC.2008-2235
  28. Sundaram S.M., Marx R., Lesslich H.M., Dietzel I.D. Deficiency of thyroid hormone reduces voltage-gated Na+ currents as well as expression of Na+/K+-ATPase in the mouse hippocampus. Int. J. Mol. Sci. 2022; 23(8): 4133. doi: 10.3390/IJMS23084133
  29. Baghcheghi Y., Salmani H., Beheshti F., Hosseini M. Contribution of brain tissue oxidative damage in hypothyroidism-associated learning and memory impairments. Adv. Biomed. Res. 2017; 6(1): 59. doi: 10.4103/2277-9175.206699
  30. Forini F., Nicolini G., Kusmic C. et al. Integrative analysis of differentially expressed genes and miRNAs predicts complex T3-mediated protective circuits in a rat model of cardiac ischemia reperfusion. Sci. Rep. 2018; 8(1): 1–16. doi: 10.1038/s41598-018-32237-0
  31. Singh R., Upadhyay G., Godbole M.M. Hypothyroidism alters mitochondrial morphology and induces release of apoptogenic proteins during rat cerebellar development. J. Endocrinol. 2003; 176(3): 321–329. doi: 10.1677/JOE.0.1760321
  32. Zhuravliova E., Barbakadze T., Jojua N. et al. Synaptic and non-synaptic mitochondria in hippocampus of adult rats differ in their sensitivity to hypothyroidism. Cell Mol. Neurobiol. 2012; 32(8): 1311–1321. doi: 10.1007/S10571-012-9857-8
  33. Vega-Núñez E., Menéndez-Hurtado A., Garesse R. et al. Thyroid hormone-regulated brain mitochondrial genes revealed by differential cDNA cloning. J. Clin. Invest. 1995; 96(2): 893–899. doi: 10.1172/JCI118136
  34. Lin H.Y., Davis F.B., Luidens M.K. et al. Molecular basis for certain neuroprotective effects of thyroid hormone. Front. Mol. Neurosci. 2011; 4: 29. doi: 10.3389/fnmol.2011.00029
  35. Sayre N.L., Sifuentes M., Holstein D. et al. Stimulation of astrocyte fatty acid oxidation by thyroid hormone is protective against ischemic stroke-induced damage. J. Cereb. Blood Flow Metab. 2017; 37(2): 514–527. doi: 10.1177/0271678X16629153
  36. Sadana P., Coughlin L., Burke J. et al. Anti-edema action of thyroid hormone in MCAO model of ischemic brain stroke: possible association with AQP4 modulation. J. Neurol. Sci. 2015; 354(1–2): 37–45. doi: 10.1016/j.jns.2015.04.042
  37. Mendes-de-Aguiar C.B.N., Alchini R., Decker H. et al. Thyroid hormone increases astrocytic glutamate uptake and protects astrocytes and neurons against glutamate toxicity. J. Neurosci. Res. 2008; 86(14): 3117–3125. doi: 10.1002/jnr.21755
  38. Losi G., Garzon G., Puia G. Nongenomic regulation of glutamatergic neurotransmission in hippocampus by thyroid hormones. Neuroscience. 2008; 151(1): 155–163. doi: 10.1016/j.neuroscience.2007.09.064
  39. Sun D., Wang W., Wang X. et al. BFGF plays a neuroprotective role by suppressing excessive autophagy and apoptosis after transient global cerebral ischemia in rats. Cell Death Dis. 2018; 9(2). doi: 10.1038/s41419-017-0229-7
  40. Wu X., Reddy D.S. Integrins as receptor targets for neurological disorders. Pharmacol. Ther. 2012; 134(1): 68–81. doi: 10.1016/j.pharmthera.2011.12.008
  41. Genovese T., Impellizzeri D., Ahmad A. et al. Post-ischaemic thyroid hormone treatment in a rat model of acute stroke. Brain Res. 2013; 1513: 92–102. doi: 10.1016/J.BRAINRES.2013.03.001
  42. Li J., Abe K., Milanesi A., Liu Y.Y., Brent G.A. Thyroid hormone protects primary cortical neurons exposed to hypoxia by reducing DNA methylation and apoptosis. Endocrinology. 2019; 160(10): 2243–2256. doi: 10.1210/EN.2019-00125
  43. Hu F., Knoedler J.R., Denver R.J. A mechanism to enhance cellular responsivity to hormone action: Krüppel-like factor 9 promotes thyroid hormone receptor-β autoinduction during postembryonic brain development. Endocrinology. 2016; 157(4): 1683–1693. doi: 10.1210/EN.2015-1980/SUPPL_FILE/EN-15-1980.PDF
  44. Farwell A.P., Dubord-Tomasetti S.A., Pietrzykowski A.Z. et al. Regulation of cerebellar neuronal migration and neurite outgrowth by thyroxine and 3,3’,5’-triiodothyronine. Brain Res. Dev. Brain Res. 2005; 154(1): 121–135. doi: 10.1016/J.DEVBRAINRES.2004.07.016
  45. Oliveira da Silva M.I., Liz M.A. Linking alpha-synuclein to the actin cytoskeleton: consequences to neuronal function. Front. Cell Dev. Biol. 2020; 8: 787. doi: 10.3389/FCELL.2020.00787/BIBTEX
  46. Talhada D., Feiteiro J., Costa A.R. et al. Triiodothyronine modulates neuronal plasticity mechanisms to enhance functional outcome after stroke. Acta Neuropathol. Commun. 2019; 7(1): 1–18. doi: 10.1186/S40478-019-0866-4/FIGURES/7
  47. Bornschein G., Schmidt H. Synaptotagmin ca 2+ sensors and their spatial coupling to presynaptic ca v channels in central cortical synapses. Front. Mol. Neurosci. 2019; 11: 494. doi: 10.3389/FNMOL.2018.00494/BIBTEX
  48. Zhang L., Cooper-Kuhn C.M., Nannmark U. et al. Stimulatory effects of thyroid hormone on brain angiogenesis in vivo and in vitro. J. Cereb. Blood Flow Metab. 2010; 30(2): 323. doi: 10.1038/JCBFM.2009.216
  49. Davis F.B., Mousa S.A., O’Connor L. et al. Proangiogenic action of thyroid hormone is fibroblast growth factor-dependent and is initiated at the cell surface. Circ. Res. 2004; 94(11): 1500–1506. doi: 10.1161/01.RES.0000130784.90237.4A
  50. Elbers L.P.B., Fliers E., Cannegieter S.C. The influence of thyroid function on the coagulation system and its clinical consequences. J. Thromb. Haemost. 2018; 16(4): 634–645. doi: 10.1111/JTH.13970
  51. Hieber M., von Kageneck C., Weiller C., Lambeck J. Thyroid diseases are an underestimated risk factor for cerebral venous sinus thrombosis. Front. Neurol. 2020; 11: 1245. doi: 10.3389/FNEUR.2020.561656/BIBTEX
  52. Stuijver D.J.F., van Zaane B., Romualdi E. et al. The effect of hyperthyroidism on procoagulant, anticoagulant and fibrinolytic factors: a systematic review and meta-analysis. Thromb. Haemost. 2012; 108(6): 1077–1088. doi: 10.1160/TH12-07-0496
  53. Horacek J., Maly J., Svilias I. et al. Prothrombotic changes due to an increase in thyroid hormone levels. Eur. J. Endocrinol. 2015; 172(5): 537–542. doi: 10.1530/EJE-14-0801
  54. Davis P.J., Mousa S.A., Schechter G.P. New interfaces of thyroid hormone actions with blood coagulation and thrombosis. Clin. Appl. Thromb. 2018; 24(7): 1014–1019. doi: 10.1177/1076029618774150
  55. Pietzner M., Engelmann B., Kacprowski T. et al. Plasma proteome and metabolome characterization of an experimental human thyrotoxicosis model. BMC Med. 2017; 15(1): 1–18. doi: 10.1186/S12916-016-0770-8/PEER-REVIEW
  56. Shih A., Zhang S., Cao H.J. et al. Disparate effects of thyroid hormone on actions of epidermal growth factor and transforming growth factor-α are mediated by 3′,5′-cyclic adenosine 5′-monophosphate-dependent protein kinase II. Endocrinology. 2004; 145(4): 1708–1717. doi: 10.1210/EN.2003-0742
  57. Klein J.R. The immune system as a regulator of thyroid hormone activity. Exp. Biol. Med. (Maywood). 2006; 231(3): 229–236. doi: 10.1177/153537020623100301
  58. Marchiori R.C., Pereira L.A.F., Naujorks A.A. et al. Improvement of blood inflammatory marker levels in patients with hypothyroidism under levothyroxine treatment. BMC Endocr. Disord. 2015; 15(1): 1–9. doi: 10.1186/S12902-015-0032-3/FIGURES/1
  59. de Castro A.L., Fernandes R.O., Ortiz V.D. et al. Thyroid hormones decrease the proinflammatory TLR4/NF-κβ pathway and improve functional parameters of the left ventricle of infarcted rats. Mol. Cell Endocrinol. 2018; 461: 132–142. doi: 10.1016/J.MCE.2017.09.003
  60. Scanlan T.S., Suchland K.L., Hart M.E. et al. 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nat. Med. 2004; 10(6): 638–642. doi: 10.1038/nm1051
  61. di Leo N., Moscato S., Borso’ M. et al. Delivery of thyronamines (TAMs) to the brain: a preliminary study. Molecules. 2021; 26(6): 1616. doi: 10.3390/molecules26061616
  62. Cöster M., Biebermann H., Schöneberg T., Stäubert C. Evolutionary conservation of 3-iodothyronamine as an agonist at the trace amine-associated receptor 1. Eur. Thyroid J. 2015; 4(1): 9–20. doi: 10.1159/000430839
  63. Manni M.E., De Siena G., Saba A. et al. Pharmacological effects of 3-iodothyronamine (T1AM) in mice include facilitation of memory acquisition and retention and reduction of pain threshold. Br. J. Pharmacol. 2013; 168(2): 354–362. doi: 10.1111/j.1476-5381.2012.02137.x
  64. Musilli C., De Siena G., Manni M.E. et al. Histamine mediates behavioural and metabolic effects of 3-iodothyroacetic acid, an endogenous end product of thyroid hormone metabolism. Br. J. Pharmacol. 2014; 171(14): 3476–3484. doi: 10.1111/bph.12697
  65. Doyle K.P., Suchland K.L., Ciesielski T.M.P. et al. Affiliations expand et al. Novel thyroxine derivatives, thyronamine and 3-iodothyronamine, induce transient hypothermia and marked neuroprotection against stroke injury. Stroke. 2007; 38(9): 2569–2576. doi: 10.1161/STROKEAHA.106.480277
  66. Филимонов Д.А., Трубникова Н.Н., Белоцерковская М.А. и др. Терморегуляторные эффекты производных трийодтиронина: in vivo исследование и обзор потенциальных нейропротекторных свойств. Международный неврологический журнал. 2020; 16(1): 65–71. Filimonov D.A., Trubnikoba N.N., Belotserkovskaya M.A. et al. Thermoregulatory effects of triiodothyronine derivatives: in vivo study and review of potential neuroprotective effects. International Neurological Journal. 2020; 16(1): 65–71. (In Russ.) doi: 10.22141/2224-0713.16.1.2020.197333.
  67. You J.S., Kim J.Y., Yenari M.A. Therapeutic hypothermia for stroke: unique challenges at the bedside. Front. Neurol. 2022; 13: 2221. doi: 10.3389/FNEUR.2022.951586/BIBTEX
  68. Tozzi F., Rutigliano G., Borsò M. et al. T1AM-TAAR1 signalling protects against OGD-induced synaptic dysfunction in the entorhinal cortex. Neurobiol. Dis. 2021; 151: 105271. doi: 10.1016/J.NBD.2021.105271
  69. Alevizaki M., Synetou M., Xynos K. et al. Hypothyroidism as a protective factor in acute stroke patients. Clin. Endocrinol. (Oxf). 2006; 65(3): 369–372. doi: 10.1111/j.1365-2265.2006.02606.x
  70. Oshinaike O., Ogbera A., Azenabor A. et al. Effect of sub-clinical hypothyroidism on clinical severity in first-ever acute ischemic stroke. Nig. Q. J. Hosp. Med. 2015; 25(2): 95–98.
  71. Akhoundi F.H., Ghorbani A., Soltani A., Meysamie A. Favorable functional outcomes in acute ischemic stroke patients with subclinical hypothyroidism. Neurology. 2011; 77(4): 349–354. doi: 10.1212/WNL.0b013e3182267ba0
  72. Baek J.H., Chung P.W., Kim Y.B. et al. Favorable influence of subclinical hypothyroidism on the functional outcomes in stroke patients. Endocr. J. 2010; 57(1): 23–29. doi: 10.1507/ENDOCRJ.K09E-206
  73. Ambrosius W., Kazmierski R., Gupta V. et al. Low free triiodothyronine levels are related to poor prognosis in acute ischemic stroke. Exp. Clin. Endocrinol. Diabetes. 2011; 119(3): 139–143. doi: 10.1055/S-0030-1267918
  74. O’Keefe L.M., Conway S.E., Czap A. et al. Thyroid hormones and functional outcomes after ischemic stroke. Thyroid Res. 2015; 8(1): 9. doi: 10.1186/s13044-015-0021-7
  75. Jiang X., Xing H., Wu J. et al. Prognostic value of thyroid hormones in acute ischemic stroke — a meta analysis. Sci. Reports. 2017; 7(1): 1–8. doi: 10.1038/s41598-017-16564-2
  76. Dhital R., Poudel D.R., Tachamo N. et al. Ischemic stroke and impact of thyroid profile at presentation: a systematic review and meta-analysis of observational studies. J. Stroke Cerebrovasc. Dis. 2017; 26(12): 2926–2934. doi: 10.1016/J.JSTROKECEREBROVASDIS.2017.07.015
  77. Pantos C.I., Trikas A.G., Pisimisis E.G. et al. Effects of acute triiodothyronine treatment in patients with anterior myocardial infarction undergoing primary angioplasty: evidence from a pilot randomized clinical trial (ThyRepair Study). Thyroid. 2022. 32(6): 714–724. doi: 10.1089/THY.2021.0596
  78. Wooliscroft L., Altowaijri G., Hildebrand A. et al. Phase I randomized trial of liothyronine for remyelination in multiple sclerosis: a dose-ranging study with assessment of reliability of visual outcomes. Mult. Scler. Relat. Disord. 2020; 41: 102015. doi: 10.1016/J.MSARD.2020.102015

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Filimonov D.A., Yevtushenko S.K., Fedorova A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies