Ultrastructure of synapses of human cerebral cortex in the old age


Cite item

Full Text

Abstract

In the present electron-microscopic study, changes of ultrastructure of synapses in the sensory-motor and frontal cerebral cortex in humans of old age are demonstrated. Abnormalities of distribution of synaptic vesicles in the presynaptic ending and changes of  mechanisms  of  their  rapprochement  and  attachment  to  the presynaptic membrane were found. Analysis of the obtained results suggests that disturbed interaction between synaptic vesicles and presynaptic membrane represents a stage preceding the destruction and disappearance of the synapse

 

About the authors

N. N. Bogolepov

Research Center of Neurology, Russian Academy of Medical Sciences, Moscow

Author for correspondence.
Email: platonova@neurology.ru
Russian Federation

References

  1. Боголепов Н.Н. Ультраструктура синапсов в норме и патологии. М.: Медицина, 1975.
  2. Боголепов Н.Н. Изменения ультраструктуры активной зоны синапсов коры большого мозга при старении. Российские морфологические ведомости 1999; 1: 36–40.
  3. Боголепов Н.Н. Возрастные изменения ультраструктуры синапсов коры большого мозга. Морфология 2002; 223: 23–25.
  4. Боголепов Н.Н., Фрумкина Л.Е. Возрастные изменения ультраструктуры синапсов в мозгу человека. Морфология 2006; 4: 24–28.
  5. Саркисов С.А., Боголепов Н.Н. Электронная микроскопия мозга. М.: Медицина, 1967.
  6. Семченко В.В., Степанов С.Е., Боголепов Н.Н. Синаптическая пластичность головного мозга. Омск, 2008.
  7. Adams J. Plasticity of the synaptic contact zone following loss of synapses in the cerebral cortex of aging humans. Brain Res. 1987; 424: 343–351.
  8. Akopian G., Walsh J.P. Pree and postsynaptic contributions to age-related alterations in corticostriatal synaptic plasticity. Synapse 2006; 60: 233–238.
  9. BertoniiFreddari C., Fattoretti P., Casoli T. et al. Morphological plasticity of synaptic mitochondria during aging. Brain Res. 1993; 628: 193–200.
  10. BertoniiFreddari C., Fattoretti P., Giorgetti B. et al. Synaptic pathology in the brain cortex of old monkeys as early alteration in senile plague formation. Rejuvenation Res. 2006; 9: 85–88.
  11. BrunsooBechtold J.K., Linville M.C., Sonntag W.E. Age-related synaptic changes in sensorimotor cortex of the Brown Norway X fischer 334 rat. Brain Res. 2000; 872: 125–133.
  12. Geinisman V., de TolledooMorrell L., Morrell F. Loss of perforated synapses in the dentate gyrus: morphological substrate of memory deficit in aged rats. Proc. Natl. Acad. Sci. USA 1986; 83: 2027–2031.
  13. Gorini A., Canosi U., Devecchi E. et al. AMPasse enzyme activities during ageing in different types of somatic and synaptic plasma membranes from rat frontal cerebral cortex. Prog. Neuropsychopharmacol. Biol. Psychiatry 2002; 26: 81–90.
  14. Jawamoto M., Hagishita T., ShojiiKasai V. et al. Age-related changes in the levels of voltageedependent calcium channels and other synaptic proteins in rat brain cortices. Neurosci. Lett. 2004; 336: 277–281.
  15. Konev S.V., Aksentsev St., Okun I.M. et al. Structural reorganization of the brain synaptic membranes and aging. Fiziol. Zh. 1990; 36: 36–42.
  16. Langmeier M., Trojan S. Presynaptic terminals in the sensoriomotors area of the cerebral cortex in old laboratory rats. Sb. Lek. 1991; 93: 203–210.
  17. Lin X., Erikson C., Brun A. Cortical synaptic changes and gliosis in normal aging, alzheimer’s disease and frontal lobe degeneration. Dementia 1996; 7: 128–134.
  18. Lovova I., Lovov V., Petcov V.D. Quantification of the synapses in the hippocampus of aged rats. Z. Mikrosk. Anat. Forsch. 1989; 103: 447–458.
  19. Luebke J.I., Chang V.M., Moore T.L. et al. Normal aging results in decreased synaptic excitation and increased synaptic inhibition of layer 2/3 pyramidal cells in the monkey prefrontal cortex. Neuroscience 2004; 125: 277–288.
  20. Moll G.H., Mehnert C., Wicher M. et al. Age-associated changes in the densities of presynaptic monoamine transporters in different regions of the rat brain from early juvenite life to late adulthood. Brain Res. Dev. 2000; 119: 251–257.
  21. Nyffeler M., Zhang W.N., Feldon J. et al. Differential expression of PSD proteins in age-related spatial learning impairments. Neurobiol. Aging. 2005; 27: 30.
  22. Pakkenberg B., Pelvig D., Marner L. et al. Aging and the human neocortex. Exp. Gerontol. 2003; 38: 95–99.
  23. Peters A. Structural changes that occur during normal aging of primate cerebral hemispheres. Neurosci. Biobehev. Rev. 2002; 26: 733–41.
  24. Peters A., Moss M.B., Sethares C. The effects of aging on layer 1 of primary visual cortex in the rhesus monkey. Cereb. Cortex 2001; 11: 93–103.
  25. Platano D., BertoniiFreddari C., Fattoretti P. et al. Structural synaptic remodeling in the perirhinal cortex of adult and old rats following object recognition visual training. Rejuvenation Res. 2006; 9: 102–106.
  26. Poe B.H., Linville C., BrunsooDechtold J. Age-related decline of presumptive inhibitory synapses in the sensorimotor cortex as revealed by physial dissector. J. Comp. Neurol., 2001; 439: 65–72.
  27. Saito V., Katsumaru H., Wilson C.J. et al. Light and electron microscopie study of corticorubral synapses in adult cat: evidence for extensive synaptic remodeling during postnatal development. J. Comp. Neurol. 2001; 440: 236–244.
  28. Scheff S.W., Price D.A., Sparks D.L. Quantitative assessment if possible age-related change in synaptic numbers in the human frontal cortex. Neurobiol. Aging 2001; 22: 355?365.
  29. Shi L., Pang H., Linville M.C. et al. Maintenance of inhibitory interneurons and bontons in sensorimotor cortex between middle and old age in Fischer 344XXBrown Norwey rats. J. Chem. Neuroanat. 2006; 32: 46–53.
  30. Shimada A., Keino H., Satoh M. et al. Age-related loss synapses in the frontal cortex of SAMPIO mouse: a model of cerebral degeneration. Synapse 2003; 48: 198–204.
  31. Terry R.D., Katzman R. Life span and synapses: will there be a primary senile dementia. Neurobiol. Aging 2001; 20: 347–348.
  32. Tigges J., Herndon J.G., Rosene D.L. Preservation into old age of synaptic number and size in the supragranular layer of the dentate gyrus in rhesus monkeys. Acta Anat. (Basel) 1996; 157: 63–72.
  33. De TolledooMorrell L., Geinisman V., Morrell F. Age-dependet alterations in hippocampal synaptic plasticity: relation to memory disorders. Neurobiol. Aging 1988; 9: 581–590.
  34. Toussaint C., Kugler P. Morphometric analysis of mitochondria and boutons in the dentate gyrus molecular layer of aged rats. Anat. Embryol. (Berl.) 1989; 179: 411–414.
  35. Wong T.P., Campbell P.M., Ribeirooda-Silva A. et al. Synaptic numbers across cortical laminae and cognitive performance of rat during ageing. Neuroscience 1998; 84: 403–412.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2008 Bogolepov N.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».