Primary progressive aphasias: clinical and genetic heterogeneity and diagnostic difficulties

Cover Page

Cite item

Full Text

Abstract

This systematic review describes primary progressive aphasia (PPA) variants and includes the authors' own clinical observations. Over 20 genes have now been identified, with mutations that are directly involved in the development of the behavioural variant of frontotemporal dementia, as well as other forms of PPA. Pathomorphological markers of Alzheimer's disease were identified in 76% of cases of logopenic PPA, while signs of frontotemporal dementia associated with TDP-43 were identified in 80% of cases of the semantic variant, and those associated with TDP-43/tau were identified in 64% of cases of agrammatic PPA. The clinical diagnosis of PPA is based on a history of long-term, progressive speech disturbances and identifying a particular variant: agrammatic, semantic or logopenic. The primary variant of the speech disorder cannot be identified in approximately 30% of cases. The focus should be on the main and additional clinical signs (presence of agrammatism, object naming, word comprehension, preserved repetition), as well as neuroimaging (presence of asymmetrical frontal and/or temporal lobe atrophy).

The article also provides key aspects of differential diagnosis of the PPA variants, and puts forth a stepwise diagnostic algorithm. It examines features of PPA progression, with possible development of corticobasal syndrome, illustrated by a clinical case. A dissociation between neuroimaging findings and clinical disease variant is also demonstrated to be possible. Different neuropsychological assessments of patients with aphasia and methods of determining the severity of speech dysfunction are presented. Standardized aphasia assessment tools and the adapted PPA severity scale are provided.

About the authors

Igor V. Litvinenko

S.M. Kirov Military Medical Academy

Author for correspondence.
Email: litvinenkoiv@rambler.ru
ORCID iD: 0000-0001-8988-3011

D. Sci. (Med.), Professor, Head, Department of nervous diseases, Chief neurologist of the Russian Ministry of Defense

Russian Federation, St. Petersburg

Кristina A. Kolmakova

S.M. Kirov Military Medical Academy

Email: litvinenkoiv@rambler.ru
ORCID iD: 0000-0001-8657-1901

Cand. Sci. (Med.), lecturer, Department of nervous diseases

Russian Federation, St. Petersburg

Аndrey Yu. Emelin

S.M. Kirov Military Medical Academy

Email: litvinenkoiv@rambler.ru
ORCID iD: 0000-0002-4723-802X

D. Sci. (Med.), Professor, Department of nervous diseases

Russian Federation, St. Petersburg

Vladimir Yu. Lobzin

S.M. Kirov Military Medical Academy; North-Western State Medical University named after I.I. Mechnikov

Email: litvinenkoiv@rambler.ru
ORCID iD: 0000-0003-3109-8795

D. Sci. (Med.), Associated Professor, Professor, Department of nervous diseases, Professor, Department of neurology named after academician S.N. Davidenkov

Russian Federation, St. Petersburg; St. Petersburg

References

  1. Mesulam M.M. Slowly progressive aphasia without generalized dementia. Ann Neurol. 1982;11(6):592-598. doi: 10.1002/ana.410110607. PMID: 7114808.
  2. Spinelli E.G., Mandelli M.L., Miller Z.A. Typical and atypical pathology in primary progressive aphasia variants. Ann Neurol. 2017;81(3):430-443. doi: 10.1002/ana.24885. PMID: 28133816.
  3. Gorno-Tempini M.L., Hillis A.E., Weintraub S. et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76(11):1006-1014. doi: 10.1212/WNL.0b013e31821103e6. PMID: 21325651.
  4. Bergeron D., Gorno-Tempini M.L., Rabinovici G.D. et al. Prevalence of amyloid—в pathology in distinct variants of primary progressive aphasia. Ann Neurol. 2018;84(5):729-740. doi: 10.1002/ana.25333. PMID: 30255971.
  5. Rohrer J.D., Guerreiro R., Vandrovcova J. et al. The heritability and genetics of frontotemporal lobar degeneration. Neurology. 2009;73(18):1451-1456. doi: 10.1212/WNL.0b013e3181bf997a. PMID: 19884572.
  6. Mahoney C.J., Beck J., Rohrer J.D. et al. Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features. Brain. 2012;135(Pt 3):736-750. doi: 10.1093/brain/ awr361. PMID: 22366791.
  7. Snowden J.S., Rollinson S., Thompson J.C. Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. Brain. 2012;135(Pt 3):693-708. doi: 10.1093/brain/awr355. PMID: 22300873.
  8. Shpilyukova Yu.A., Fedotova E.Yu., Berdnikovich E.S. et al. C9ORF72-as- sociated frontotemporal dementia in the Russian population. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2020;120(9):98-106. doi: 10.17116/jnev- ro202012009198. (In Russ.)
  9. Shpilyukova Yu.A., Fedotova E.Yu., Illarioshkin S.N. Genetic diversity of frontotemporal dementia. Molekulyarnaya biologiya. 2020;54(1):17-28. doi: 10.31857/S0026898420010139. (In Russ.)
  10. De Jesus-Hernandez M., Mackenzie I.R., Boeve B.F. et al. Expanded GG- GGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72(2):245-256. DOI: 10.1016/j. neuron.2011.09.011. PMID: 21944778.
  11. Nguyen H.P., Van Broeckhoven C., van der Zee J. ALS genes in the genomic era and their implications for FTD. Trends Genet. 2018;34(6):404-423. doi: 10.1016/j.tig.2018.03.001. PMID: 29605155.
  12. Haeusler A.R., Donnelly C.J., Rothstein J.D. The expanding biology of the C9orf72 nucleotide repeat expansion in neurodegenerative disease. Nat Rev Neurosci. 2016;17(6):383-395. doi: 10.1038/nrn.2016.38. PMID: 27150398.
  13. Cruts M., Engelborghs S., van der Zee J. et al. C9orf72-related amyotrophic lateral slerosis and frontotemporal dementia. In: Adam M.P., Ardinger H.H., Pa- gon R.A. et al., eds. GeneReviews® [Internet]. Seattle, 1993-2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK268647
  14. Ber I., Camuzat A., Hannequin D. et al. Phenotype variability in progranulin mutation carriers: a clinical, neuropsychological, imaging and genetic study. Brain. 2008;131(Pt 3):732-746. doi: 10.1093/brain/awn012. PMID: 18245784.
  15. Galimberti D., Fumagalli G.G., Fenoglio C. et al. Progranulin plasma levels predict the presence of GRN mutations in asymptomatic subjects and do not correlate with brain atrophy: results from the GENFI study. Neurobiol Aging. 2018;62:245.e9-245.e12. doi: 10.1016/j.neurobiolaging.2017.10.016. PMID: 29146050
  16. Pottier C., Ravenscroft T.A., Sanchez-Contreras M., Rademakers R. Genetics of FTLD: overview and what else we can expect from genetic studies. J Neurochem. 2016;138(Suppl 1):32-53. doi: 10.1111/jnc.13622. PMID: 27009575.
  17. Ghetti B., Oblak A.L., Boeve B.F. et al. Invited review: Frontotemporal dementia caused by microtubule-associated protein tau gene (MAPT) mutations: A chameleon for neuropathology and neuroimaging. Neuropathol Appl Neurobiol. 2015;41(1):24-46. doi: 10.1111/nan.12213. PMID: 25556536.
  18. Sirkis D.W., Geier E.G., Bonham L.W. et al. Recent advances in the genetics of frontotemporal dementia. Curr Genet Med Rep. 2019;7(1):41-52. doi: 10.1007/s40142-019-0160-6. PMID: 31687268.
  19. Borroni B., Archetti S., Del Bo R. et al. TARDBP mutations in frontotemporal lobar degeneration: frequency, clinical features, and disease course. Rejuvenation Res. 2010;13(5):509-517. doi: 10.1089/rej.2010.1017. PMID: 20645878.
  20. Saracino D., Ferrieux S., Nogu s-Lassiaille M. Cognitive, linguistic and neuroanatomical features of primary progressive aphasias due to frontotemporal dementia gene mutations. Eur J Neurol. 2020;27(Suppl 1):258-259
  21. Kremen S.A., Mendez M.F., Tsai P.H., Teng E. Extrapyramidal signs in the primary progressive aphasias. Am J Alz Dis Other Dem. 2011;26(1):72-77. doi: 10.1177/1533317510391239. PMID: 21282281
  22. Graff-Radford J., Duffy J.R., Strand E.A., Josephs K.A. Parkinsonian motor features distinguish the agrammatic from logopenic variant of primary progressive aphasia. Park Rel Dis. 2012;18(7):890-892. doi: 10.1016/j.parkreldis. 2012.04.011. PMID: 22575236.
  23. Rohrer J.D., Rossor M.N., Warren J.D. Syndromes of nonfluent primary progressive aphasia: a clinical and neurolinguistic analysis. Neurology. 2010;75(7): 603-610. doi: 10.1212/WNL.0b013e3181ed9c6b. PMID: 20713949.
  24. Warrington E.K. The selective impairment of semantic memory. Q J Exp Psychol. 1975;27(4):635-657. doi: 10.1080/14640747508400525. PMID: 1197619.
  25. Gorno-Tempini M.L., Dronkers N.F., Rankin K.P. et al. Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol. 2004;55(3):335-346. doi: 10.1002/ana.10825. PMID: 14991811.
  26. Utianski R.L., Botha H., Martin P.R. Clinical and neuroimaging characteristics of clinically unclassifiable primary progressive aphasia. Brain Lang. 2019;197:104676. doi: 10.1016/j.bandl.2019.104676. PMID: 31419589.
  27. Sajjadi S.A., Patterson K., Nestor P.J. Logopenic, mixed, or Alzheimer-related aphasia? Neurology. 2014;82(13):1127-1131. DOI: 10.1212/ WNL.0000000000000271. PMID: 24574548.
  28. Marshall C.R., Hardy C.J.D., Volkmer A. et al. Primary progressive aphasia: a clinical approach. J Neurol. 2018;265(6):1474-1490. doi: 10.1007/s00415- 018-8762-6. PMID: 29392464.
  29. Goodglass H., Kaplan E. The assessment of aphasia and related disorders. Philadelphia: Lea and Febiger, 1972.
  30. Kertesz A. Western Aphasia Battery-Revised. San Antonio, TX: The Psychological Corporation, 2007.
  31. Swinburn K., Porter G., Howard D. The Comprehensive Aphasia Test. Hove: Psychology Press. 2005.
  32. Sapolsky D., Domoto-Reilly K., Dickerson B.C. Use of the Progressive Aphasia Severity Scale (PASS) in monitoring speech and language status in PPA. Aphasiology. 2014;28(8-9):993-1003. doi: 10.1080/02687038.2014.931563. PMID: 25419031.
  33. Morris J.C. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 1993;43(11):2412-2414. doi: 10.1212/wnl.43.11.2412-a. PMID: 8232972.
  34. Sajjadi S.A., Patterson K., Arnold R.J. et al. Primary progressive aphasia: a tale of two syndromes and the rest. Neurology. 2012;78(21):1670-1677. doi: 10.1212/WNL.0b013e3182574f79. PMID: 22573633.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Clinical and genetic patterns in PPA development (based on [20]).

Download (105KB)
3. Fig. 2. Brain MRI of a patient with aPPA. Arrows indicate atrophy of the left posterior fronto-insular region.

Download (187KB)
4. Fig. 3. Brain MRI of a patient with sPPA. Arrows indicate atrophy (А, В — asymmetrical, С — symmetrical) of the anterior temporal lobe.

Download (124KB)
5. Fig. 4. Brain MRI of a patient with lPPA over time: initial presentation (A), after 2 years of follow-up (B), after 3 years of follow-up (C). Significant asymmetrical brain atrophy, predominantly in the left temporal lobe and occipital lobe.

Download (129KB)
6. Fig. 5. PPA diagnosis algorithm (adapted from [28]).

Download (179KB)
7. Fig. 6. Brain MRI of a patient with mixed PPA and subsequent development of clinically significant corticobasal syndrome. А — brain MRI in 2016; В — in 2017; С — in 2019.

Download (167KB)

Copyright (c) 2021 Litvinenko I.V., Kolmakova К.A., Emelin А.Y., Lobzin V.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies