Structural pharmacology of GABAА receptors

Cover Page

Cite item

Full Text

Abstract

Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the mammalian central nervous system (CNS), activating the inotropic type A receptors (GABAА receptors) to provide fast inhibition. GABAА receptors are the main target for various groups of drugs that are widely used in the treatment of CNS disorders.

This review examines the relationship between the physiological effects of GABAА receptor activation and modulation by various substances (including medicinal compounds), the receptor's structure, and the interaction of these substances with specific modulatory sites. Recent advances in cryogenic electron microscopy have led to fundamental improvements in understanding the detailed organization and function of GABAА receptors. This review is based on both the latest structural data obtained from cryogenic electron microscopy and the results of biochemistry and electrophysiology studies, as well as molecular modelling.

About the authors

Alexey V. Rossokhin

Research Center of Neurology

Author for correspondence.
Email: alrossokhin@yahoo.com
ORCID iD: 0000-0001-7024-7461

Cand. Sci. (Phys.-Math.), leading researcher, Laboratory of functional synaptology

Russian Federation, Moscow

Irina N. Sharonova

Research Center of Neurology

Email: alrossokhin@yahoo.com
ORCID iD: 0000-0001-9955-1870

D. Sci. (Biol.), leading researcher, Laboratory of functional synaptology

Russian Federation, Moscow

References

  1. Sieghart W. Allosteric modulation of GABAA receptors via multiple drug-binding sites. Adv Pharmacol 2015;72:53–96. doi: 10.1016/bs.apha.2014.10.002. PMID: 25600367.
  2. Olsen R.W. GABAA receptor: positive and negative allosteric modulators. Neuropharmacology 2018;136(Pt A):10–22. doi: 10.1016/j.neuropharm.2018.01.036. PMID: 29407219.
  3. Hille B. Ionic channels of excitable membrane. 3rd ed. Massachusetts, 2001.
  4. Nemecz A., Prevost M.S., Menny A. et al. Emerging molecular mechanisms of signal transduction in pentameric ligand-gated ion channels. Neuron. 2016;90(3):452–470. doi: 10.1016/j.neuron.2016.03.032. PMID: 27151638.
  5. Sieghart W. Structure, pharmacology, and function of GABAA receptor subtypes. Adv Pharmacol. 2006;54:231–263. doi: 10.1016/s1054-3589(06)54010-4. PMID: 17175817.
  6. Hevers W., Luddens H. The diversity of GABAA receptors. Pharmacological and electrophysiological properties of GABAA channel subtypes. Mol Neurobiol. 1998;18(1):35–86. doi: 10.1007/BF02741459. PMID: 9824848.
  7. Mortensen M., Patel B., Smart T.G. GABA Potency at GABAA receptors found in synaptic and extrasynaptic zones. Front Cell Neurosci. 2011;6:1. doi: 10.3389/fncel.2012.00001. PMID: 22319471.
  8. Keramidas A., Moorhouse A.J., Schofield P.R. et al. Ligand-gated ion channels: mechanisms underlying ion selectivity. Prog Biophys Mol Biol. 2004;86(2):161–204. doi: 10.1016/j.pbiomolbio.2003.09.002. PMID: 15288758.
  9. Laverty D., Desai R., Uchanski T. et al. Cryo-EM structure of the human α1β3γ2 GABAA receptor in a lipid bilayer. Nature. 2019;565(7740):516–520. doi: 10.1038/s41586-018-0833-4. PMID: 30602789.
  10. Kim J.J., Gharpure A., Teng J. et al. Shared structural mechanisms of general anaesthetics and benzodiazepines. Nature. 2020. 585(7824):303–308. doi: 10.1038/s41586-020-2654-5. PMID: 32879488.
  11. Sternbach L.H. The benzodiazepine story. J Med Chem. 1979;22(1):1–7. doi: 10.1021/jm00187a001. PMID: 34039.
  12. Sigel E., Mamalaki C., Eric A.B. Isolation of a GABA receptor from bovine brain using a benzodiazepine affinity column. FEBS Lett. 1982;147(1):45–48. doi: 10.1016/0014-5793(82)81008-9. PMID: 6291997.
  13. Sigel E., Stephenson F.A., Mamalaki C. et al. A gamma-aminobutyric acid/benzodiazepine receptor complex of bovine cerebral cortex. J Biol Chem. 1983;258(11):6965–6971. PMID: 6304068.
  14. Sieghart W., Savic M.M. International Union of Basic and Clinical Pharmacology. CVI: GABAA receptor subtype- and function-selective ligands: key issues in translation to humans. Pharmacol Rev. 2018;70(4):836–878. doi: 10.1124/pr.117.014449. PMID: 30275042.
  15. Sigel E., Ernst M. The benzodiazepine binding sites of GABAA receptors. Trends Pharmacol Sci. 2018;39(7):659–671. doi: 10.1016/j.tips.2018.03.006. PMID: 29716746.
  16. Castellano D., Shepard R.D., Lu W. Looking for novelty in an “old” receptor: recent advances toward our understanding of GABAARs and their implications in receptor pharmacology. Front Neurosci. 2020;14:616298. doi: 10.3389/fnins.2020.616298. PMID: 33519367.
  17. Tan K.R., Rudolph U., Luscher C. Hooked on benzodiazepines: GABAA receptor subtypes and addiction. Trends Neurosci. 2011;34(4):188–197. doi: 10.1016/j.tins.2011.01.004. PMID: 21353710.
  18. Jacob T.C. Neurobiology and therapeutic potential of alpha5-GABA Type A receptors. Front Mol Neurosci. 2019;12:179. doi: 10.3389/fnmol.2019.00179. PMID: 31396049.
  19. Masiulis S., Desai R., Uchanski T. et al. GABAA receptor signalling mechanisms revealed by structural pharmacology. Nature. 2019;565(7740):454–459. doi: 10.1038/s41586-018-0832-5. PMID: 30602790.
  20. Wieland H.A., Luddens H., Seeburg P. A single histidine in GABAA receptors is essential for benzodiazepine agonist binding. J Biol Chem. 1992;267(3):1426–1429. PMID: 1346133.
  21. Baur R., Sigel E. Benzodiazepines affect channel opening of GABAA receptors induced by either agonist binding site. Mol Pharmacol. 2005;67(4):1005–1008. doi: 10.1124/mol.104.008151. PMID: 15657366.
  22. Campo-Soria C., Chang Y., Weiss D.S. Mechanism of action of benzodiazepines on GABAA receptors. Br J Pharmacol. 2006;148(7):984–990. doi: 10.1038/sj.bjp.0706796. PMID: 16783415.
  23. Kim J.J., Hibbs R.E. Direct structural insights into GABAA receptor pharmacology. Trends Biochem Sci. 2021;46(6):502–517. doi: 10.1016/j.tibs.2021.01.011. PMID: 33674151.
  24. Safavynia S.A., Keating G., Speigel I. et al. Effects of gamma-aminobutyric acid type A receptor modulation by flumazenil on emergence from general anesthesia. Anesthesiology. 2016;125(1):147–158. doi: 10.1097/ALN.0000000000001134. PMID: 27111534.
  25. Sanger D.J. The pharmacology and mechanisms of action of new generation, non-benzodiazepine hypnotic agents. CNS Drugs. 2004;18(Suppl 1):9–15; discussion 41, 43–15. doi: 10.2165/00023210-200418001-00004. PMID: 15291009.
  26. Hanson S.M., Morlock E.V., Satyshur K.A. et al. Structural requirements for eszopiclone and zolpidem binding to the gamma-aminobutyric acid type-A (GABAA) receptor are different. J Med Chem. 2008;51(22):7243–7252. doi: 10.1021/jm800889m. PMID: 18973287.
  27. Li Z., Scheraga H.A. Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proc Natl Acad Sci USA. 1987;84(19):6611–6615. doi: 10.1073/pnas.84.19.6611. PMID: 3477791.
  28. Zhorov B.S. Vector method for calculating derivatives of energy of atom-atom interactions of complex molecules according to generalized coordinates. J Struct Chem. 1981; 22:4–8.
  29. Rossokhin A., Teodorescu G., Grissmer S. et al. Interaction of d-tubocurarine with potassium channels: molecular modeling and ligand binding. Mol Pharmacol. 2006;69(4):1356–1365. doi: 10.1124/mol.105.017970. PMID: 16391240.
  30. Garden D.P., Zhorov B.S. Docking flexible ligands in proteins with a solvent exposure- and distance-dependent dielectric function. J Comput Aided Mol Des. 2010;24(2):91–105. doi: 10.1007/s10822-009-9317-9. PMID: 20119653.
  31. Rossokhin A., Dreker T., Grissmer S. et al. Why does the inner-helix mutation A413C double the stoichiometry of Kv1.3 channel block by emopamil but not by verapamil? Mol Pharmacol. 2011;79(4):681–691. doi: 10.1124/mol.110.068031. PMID: 21220411.
  32. Rossokhin A. V., Sharonova I. N., Dvorzhak A. et al. The mechanisms of potentiation and inhibition of GABAA receptors by non-steroidal anti-inflammatory drugs, mefenamic and niflumic acids. Neuropharmacology. 2019;160:107795. doi: 10.1016/j.neuropharm.2019.107795. PMID: 31560908.
  33. Rossokhin A. The general anesthetic etomidate and fenamate mefenamic acid oppositely affect GABAAR and GlyR: a structural explanation. Eur Biophys J. 2020:49(7):591-607. doi: 10.1007/s00249-020-01464-7. PMID: 32940715.
  34. Tikhonova T. A., Rassokhina I. V., Kondrakhin E. A. et al. Development of 1,3-thiazole analogues of imidazopyridines as potent positive allosteric modulators of GABAA receptors. Bioorg Chem. 2020;94:103334. doi: 10.1016/j.bioorg.2019.103334. PMID: 31711764.
  35. Buhr A., Sigel E. A point mutation in the gamma2 subunit of gamma-aminobutyric acid type A receptors results in altered benzodiazepine binding site specificity. Proc Natl Acad Sci USA. 1997;94(16):8824–8829. doi: 10.1073/pnas.94.16.8824. PMID: 9238062.
  36. Sancar F., Ericksen S.S., Kucken A.M. et al. Structural determinants for high-affinity zolpidem binding to GABA-A receptors. Mol Pharmacol. 2007;71(1):38–46. doi: 10.1124/mol.106.029595. PMID: 17012619.
  37. Franks N.P. Molecular targets underlying general anaesthesia. Br J Pharmacol. 2006; 147(Suppl 1):S72–S81. doi: 10.1038/sj.bjp.0706441. PMID: 16402123.
  38. Löscher W., Rogawski M.A. How theories evolved concerning the mechanism of action of barbiturates. Epilepsia. 2012;53(Suppl 8):12–25. doi: 10.1111/epi.12025. PMID: 23205959.
  39. Forman S. A. Clinical and molecular pharmacology of etomidate. Anesthesiology. 2011;114(3):695–707. doi: 10.1097/ALN.0b013e3181ff72b5. PMID: 21263301.
  40. Peters J.A., Kirkness E.F., Callachan H. et al. Modulation of the GABAA receptor by depressant barbiturates and pregnane steroids. Br J Pharmacol. 1988;94(4):1257–1269. doi: 10.1111/j.1476-5381.1988.tb11646.x. PMID: 2850060.
  41. Hales T.G., Lambert J.J. The actions of propofol on inhibitory amino acid receptors of bovine adrenomedullary chromaffin cells and rodent central neurones. Br J Pharmacol. 1991;104(3):619–628. doi: 10.1111/j.1476-5381.1991.tb12479.x. PMID: 1665745.
  42. Yang J., Uchida I. Mechanisms of etomidate potentiation of GABAA receptor-gated currents in cultured postnatal hippocampal neurons. Neuroscience. 1996;73(1):69–78. doi: 10.1016/0306-4522(96)00018-8. PMID: 8783230.
  43. Krasowski M.D. Contradicting a unitary theory of general anesthetic action: a history of three compounds from 1901 to 2001. Bull. Anesth. Hist. 2003;21(3):1–24. PMID: 17494361. doi: 10.1016/s1522-8649(03)50031-2.
  44. Zhang Z.X., Lü H., Dong X.P. et al. Kinetics of etomidate actions on GABAA receptors in the rat spinal dorsal horn neurons. Brain Res. 2002;953(1–2):93–100. doi: 10.1016/s0006-8993(02)03274-2. PMID: 12384242.
  45. Ruesch D., Neumann E., Wulf H. et al. An allosteric coagonist model for propofol effects on alpha1beta2gamma2L gamma-aminobutyric acid type A receptors. Anesthesiology. 2012;116(1):47–55. doi: 10.1097/ALN.0b013e31823d0c36. PMID: 22104494.
  46. Li G.D., Chiara D.C., Sawyer G.W. et al. Identification of a GABAA receptor anesthetic binding site at subunit interfaces by photolabeling with an etomidate analog. J Neurosci. 2006;26(45):11599–11605. doi: 10.1523/JNEUROSCI.3467-06.2006. PMID: 17093081.
  47. Chiara D.C., Dostalova Z., Jayakar S.S. et al. Mapping general anesthetic binding site(s) in human α1β3 γ-aminobutyric acid type A receptors with [3H]TDBzl-etomidate, a photoreactive etomidate analogue. Biochemistry. 2012;51(4):836–847. doi: 10.1021/bi201772m. PMID: 22243422.
  48. Forman S.A., Miller K.W. Mapping general anesthetic sites in heteromeric γ-aminobutyric acid type A receptors reveals a potential for targeting receptor subtypes. Anesth Analg. 2016;123(5):1263–1273. doi: 10.1213/ANE.0000000000001368. PMID: 27167687.
  49. Jayakar S.S., Zhou X., Chiara D.C. et al. Identifying drugs that bind selectively to intersubunit general anesthetic sites in the α1β3γ2 GABAAR transmembrane domain. Mol Pharmacol. 2019;95(6):615–628. doi: 10.1124/mol.118.114975. PMID: 30952799.
  50. Bali M., Akabas M.H. Defining the propofol binding site location on the GABAA receptor. Mol Pharmacol. 2004;65(1):68–76. doi: 10.1124/mol.65.1.68. PMID: 1472223.
  51. Stewart D.S., Hotta M., Li G.D. et al. Cysteine substitutions define etomidate binding and gating linkages in the alpha-M1 domain of gamma-aminobutyric acid type A (GABAA) receptors. J Biol Chem. 2013;288(42):30373–30386. doi: 10.1074/jbc.M113.494583. PMID: 24009076.
  52. Belelli D., Lambert J.J., Peters J.A. et al. The interaction of the general anesthetic etomidate with the gamma-aminobutyric acid type A receptor is influenced by a single amino acid. Proc Natl Acad Sci USA. 1997;94(20):11031–11036. doi: 10.1073/pnas.94.20.11031. PMID: 9380754.
  53. Krasowskia M.D., Nishikawac K., Nikolaevaa N. et al. Methionine 286 in transmembrane domain 3 of the GABAA receptor β subunit controls a binding cavity for propofol and other alkylphenol general anesthetics. Neuropharmacology. 2001;41(8):952–964. doi: 10.1016/s0028-3908(01)00141-1. PMID: 11747900.
  54. Siegwart R., Krahenbuhl K., Lambert S. et al. Mutational analysis of molecular requirements for the actions of general anaesthetics at the gamma-aminobutyric acidA receptor subtype, alpha1beta2gamma2. BMC Pharmacol. 2003;3:13. doi: 10.1186/1471-2210-3-13. PMID: 14613517.
  55. Stewart D., Desai R., Cheng Q. et al. Tryptophan mutations at azi-etomidate photo-incorporation sites on alpha1 or beta2 subunits enhance GABAA receptor gating and reduce etomidate modulation. Mol Pharmacol. 2008;74(6):1687–1695. doi: 10.1124/mol.108.050500. PMID: 18805938.
  56. Miller C. Genetic manipulation of ion channels: a new approach to structure and mechanism. Neuron. 1989;2(3):1195–1205. doi: 10.1016/0896-6273(89)90304-8. PMID: 2483110.
  57. Siegwart R., Jurd R., Rudolph U. Molecular determinants for the action of general anesthetics at recombinant alpha2beta3gamma2 gamma-aminobutyric acid A receptors. J Neurochem. 2002;80(1):140–148. doi: 10.1046/j.0022-3042.2001.00682.x. PMID: 11796752.
  58. Eaton M.M., Germann A.L., Arora R. et al. Multiple non-equivalent interfaces mediate direct activation of GABAA receptors by propofol. Curr Neuropharmacol. 2016;14(7):772–780. doi: 10.2174/1570159x14666160202121319. PMID: 26830963.
  59. Reynolds D.S., Rosahl T.W., Cirone J. et al. Sedation and anesthesia mediated by distinct GABAA receptor isoforms. J Neurosci. 2003;23(24):8608–8617. doi: 10.1523/JNEUROSCI.23-24-08608.2003. PMID: 13679430.
  60. Jurd R., Arras M., Lambert S. et al. General anesthetic actions in vivo strongly attenuated by a point mutation in the GABAA receptor beta3 subunit. FASEB J. 2003;17(2):250–252. doi: 10.1096/fj.02-0611fje. PMID: 12475885.
  61. Orser B.A., Wang L.Y., Pennefather P.S. et al. Propofol modulates activation and desensitization of GABAA receptors in cultured murine hippocampal neurons. J Neurosci. 1994;14(12):7747–7760. doi: 10.1523/JNEUROSCI. 14-12-07747.1994. PMID: 7996209.
  62. Mathers D.A., Wan X., Puil E. Barbiturate activation and modulation of GABAA receptors in neocortex. Neuropharmacology. 2007;52(4):1160–1168. doi: 10.1016/j.neuropharm.2006.12.004. PMID: 17289092.
  63. Parker I., Gundersen C.B., Miledi R. Actions of pentobarbital on rat brain receptors expressed in Xenopus oocytes. J Neurosci. 1986;6(8):2290–2297. doi: 10.1523/JNEUROSCI.06-08-02290.1986. PMID: 2875136.
  64. Kitamura A., Sato R., Marszalec W. et al. Halothane and propofol modulation of gamma-aminobutyric acidA receptor single-channel currents. Anesth Analg. 2004;99(2):409–415. doi: 10.1213/01.ANE.0000131969.46439.71. PMID: 15271715.
  65. Walters R.J., Hadley S.H., Morris K.D. et al. Benzodiazepines act on GABAA receptors via two distinct and separable mechanisms. Nat Neurosci. 2000;3(12):1274–1281. doi: 10.1038/81800. PMID: 11100148.
  66. Baulieu E.E. Neurosteroids: of the nervous system, by the nervous system, for the nervous system. Recent Prog Horm Res. 1997;52:1–32. PMID: 9238846.
  67. Belelli D., Lambert J.J. Neurosteroids: endogenous regulators of the GABAA receptor. Nat Rev Neurosci. 2005;6(7):565–575. doi: 10.1038/nrn1703. PMID: 15959466.
  68. Belelli D., Hogenkamp D., Gee K.W. et al. Realising the therapeutic potential of neuroactive steroid modulators of the GABAA receptor. Neurobiol Stress. 2020;12:100207. doi: 10.1016/j.ynstr.2019.100207. PMID: 32435660.
  69. Reddy D.S., Estes W.A. Clinical potential of neurosteroids for CNS disorders. Trends Pharmacol Sci. 2016;37(7):543–561. doi: 10.1016/j.tips.2016.04.003. PMID: 27156439.
  70. Reddy D.S. Pharmacology of endogenous neuroactive steroids. Crit Rev Neurobiol. 2003;15(3–4):197–234. doi: 10.1615/critrevneurobiol.v15.i34.20. PMID: 15248811.
  71. Zorumski C.F., Paul S.M., Covey D.F. et al. Neurosteroids as novel antidepressants and anxiolytics: GABAA receptors and beyond. Neurobiol Stress. 2019;11:100196. doi: 10.1016/j.ynstr.2019.100196. PMID: 31649968.
  72. Majewska M.D., Harrison N.L., Schwartz R.D. et al. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science. 1986;232(4753):1004–1007. doi: 10.1126/science.2422758. PMID: 2422758.
  73. Turner D.M., Ransom R.W., Yang J.S.J. et al. Steroid anesthetics and naturally-occurring analogs modulate the gamma-aminobutyric acid receptor complex at a site distinct from barbiturates. J Pharmacol Exp Ther. 1989;248(3):960–966. PMID: 2539464.
  74. Li G.D., Chiara D.C., Cohen J.B. et al. Neurosteroids allosterically modulate binding of the anesthetic etomidate to gamma-aminobutyric acid type A receptors. J Biol Chem. 2009;284(18):11771–11775. doi: 10.1074/jbc.C900016200. PMID: 19282280.
  75. Chen Z.W., Manion B., Townsend R.R. et al. Neurosteroid analog photolabeling of a site in the third transmembrane domain of the beta3 subunit of the GABAA receptor. Mol Pharmacol. 2012;82(3):408–419. doi: 10.1124/mol.112.078410. PMID: 22648971.
  76. Laverty D., Thomas P., Field M. et al. Crystal structures of a GABAA-receptor chimera reveal new endogenous neurosteroid-binding sites. Nat Struct Mol Biol. 2017;24(11):977–985. doi: 10.1038/nsmb.3477. PMID: 28967882.
  77. Miller P.S., Scott S., Masiulis S. et al. Structural basis for GABAA receptor potentiation by neurosteroids. Nat Struct Mol Biol. 2017;24(11):986–992. doi: 10.1038/nsmb.3484. PMID: 28991263.
  78. Twyman R.E., Macdonald R.L. Neurosteroid regulation of GABAA receptor single-channel kinetic properties of mouse spinal cord neurons in culture. J Physiol. 1992;456:215–245. doi: 10.1113/jphysiol.1992.sp019334. PMID: 1338096.
  79. Lambert J.J., Belelli D., Peden D.R. et al. Neurosteroid modulation of GABAA receptors. Prog Neurobiol. 2003;71(1):67–80. doi: 10.1016/j.pneurobio.2003.09.001. PMID: 14611869.
  80. Gielen M., Thomas P., Smart T.G. The desensitization gate of inhibitory Cys-loop receptors. Nat Commun. 2015;6:6829. doi: 10.1038/ncomms7829. PMID: 25891813.
  81. Rossokhin A.V., Zhorov B.S. Side chain flexibility and the pore dimensions in the GABAA receptor. J Comput Aided Mol Des. 2016;30(7):559–567. doi: 10.1007/s10822-016-9929-9. PMID: 27460059.
  82. Rossokhin A.V. Homology modeling of the transmembrane domain of the GABAA receptor. Biophysics. 2017;62(5):708–716. doi: 10.1134/s0006350917050190.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. GABAA receptor architecture. A — view parallel to the membrane plane towards 2:2:1 α1β2γ2 receptor (6X3Z). The subunits are marked with colours and letters (αl is blue- feen, β2 is orange, and y2 is magenta). B — structure of a single subunit. N and С — amino acid chain terminals, ECD С-loop and cys-loop, М1-М4 - transmembrane helices, М2-М3 — TMD loop. C — view from the intracellular space towards the ECD. Intersubunit interfaces are marked with +/-. The electronic densities of GABA and diazepam in β+/α- and α+/γ- interfaces are shown. D — view from the extra space towards the TMD. Transmembrane intersubunit interfaces to which positive allosteric modulators bind are shown: β+/α- — general anaesthetics (etomidate (ETM) and propofol (PPF)), benzodiazepines (diazepam (DZP)), neuroactive steroids (allopregnanolone (ALP)); α+/β- barbiturates (phenobarbital (PBT)); β-/γ+ — barbiturates (PBT), benzodiazepines (DZP).

Download (152KB)
3. Fig. 2. Orthosteric site in the ECD with bound GABA (А) and the competitive antagonist bicuculline (B). Side chains of the residues, which play the biggest role in ligand interaction, are demonstrated. Hydrogen bonds and polar contacts are shown as red dashed lines. Only the polar hydrogen atoms are shown. C — overlay of the two cryo-EM structures: GABAA receptor with bound GABA (PDB ID 6X3Z) and with bicuculline (PDB ID 6X3S). The TMD and some structural elements of the ECD αl and β2 subunits are not shown for clarity purposes. The subunit colours correspond to those in Fig. 1, but a lighter shade is used for the 6X3Z structure in the C fragment. The arrow indicates the change in the C-loop conformation

Download (268KB)
4. Fig. 3. BZD binding site in the ECD α+/γ- interface. A, B — cryo-EM structures with bound DZP (6X3X) and flumazenil (6X3U). C, D — structural models of zolpidem and the thiazole analogue imidaz- opyridine (compound 37) binding in the ECD α+/γ- interface. Labels in A-D correspond to the terms in Fig. 1 and 2.

Download (256KB)
5. Fig. 4. Alignment of the amino acid sequences of the М1-М3 segments in the various subunits of the GABAA, receptor and glycine receptor. The sequences are taken from the UniProt database with the identification numbers GABAA_αl P14867, GABAA_β2 P47870, GABAA_β3 P28472, GABAA_γ2 P18507, GlyR_α1 093430 and GlyR_α3 075311. The alignment was performed relative to the highly-conserved Arg residues in the cytoplasmic part of the M2 helices (0'). The numbers on the right indicate the number of the last residue in the sequence.

Download (221KB)
6. Fig. 5. Intravenous anaesthetic binding in the TMD. A, B — ETM (6X3V) and PPF (6X3T) in the β+/α- interface. C — binding sites of PBT (6X3V) in the α+/β- (top) and the β-/γ+ (bottom) interfaces. D — binding sites of DZP (6X3X) in the β+/α- (top) and the β-/γ+ (bottom) interfaces. A-D show only fragments of the М1-М3 helices. Labels in A-D correspond to the terms in Fig. 1 and 2.

Download (294KB)
7. Fig.6. Binding of the neuroactive steroid ALP in the β+/α–- transmembrane intersubunit interface. A — a full size β+/α– intersubunit interface of an open α1β2γ2- GABAa receptor model, based on homology with the αl glycine receptor (3JAE). The ALP binding site and the electron densities corresponding to GABA (ECD) and ETM (TMD) are shown. B — ALP binding site, magnified. Fragments of TMD М1-М3 helices are shown. Labels in A and B correspond to the terms in Fig. 1 and 2.

Download (141KB)

Copyright (c) 2021 Rossokhin A.V., Sharonova I.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies