Pineal gland: structural variants and their role in neurological and psychiatric disorders

Cover Page

Cite item

Full Text

Abstract

The pineal gland is a small and poorly studied neuroendocrine gland located in the epithalamus. There is growing interest in the pineal gland due to its role in regulating human biological rhythms, which is associated with melatonin production, and its close neuroendocrine link between the brain's hormonal and neurally mediated activity. The paper examines the anatomical and physiological features of the pineal gland, its structural variations, and the role of the melatonin it produces in the pathogenesis of several mental and neurological disorders.

About the authors

Anastasia V. Shilova

V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology

Author for correspondence.
Email: stasya.parf@gmail.com
ORCID iD: 0000-0001-5413-9460

radiologist

Russian Federation, St. Petersburg

Natalia I. Ananyeva

V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology; Saint Petersburg State University

Email: ananieva_n@mail.ru
ORCID iD: 0000-0002-7087-0437

D. Sci. (Med.), Professor, Head, Department of clinical and laboratory diagnostics, neurophysiology and neuroimaging research, Professor, Scientific, clinical and educational center "Radiological Diagnostics and Nuclear Medicine", Institute of High Medical Technologies

Russian Federation, St. Petersburg; St. Petersburg

Natalia Yu. Safonova

V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology

Email: astarta10@yandex.ru
ORCID iD: 0000-0001-5847-4936

Cand. Sci. (Med.), senior researcher, Department of neuroimaging studies

Russian Federation, St. Petersburg

Larisa V. Lukina

V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology

Email: larisalu@yandex.ru
ORCID iD: 0000-0001-8500-7268
SPIN-code: 4693-5577
Scopus Author ID: 16520904200

Cand. Sci. (Med.), senior researcher, Head, Department of neuroimaging studies

Russian Federation, St. Petersburg

References

  1. Konovalova N.A., Vorozhtsova I.N., Pavlenko O.A. et al. [The size of the pineal gland and its structure in hyperprolactinemia according to magnetic resonance imaging]. Sovremennye problemy nauki i obrazovaniya. 2019;(6):119–119.(In Russ.)
  2. Aulinas A. Physiology of the pineal gland and melatonin. In: Endotext [Internet]. South Dartmouth; 2019.PMID: 31841296.
  3. Cipolla-Neto J., Amaral F.G.D. Melatonin as a hormone: new physiological and clinical insights. Endocr Rev. 2018;39(6):990–1028. doi: 10.1210/er.2018-00084. PMID: 30215696.
  4. Májovský M., Netuka D., Beneš V. Is surgery for pineal cysts safe and effective? Short review. Neurosurg Rev. 2018;41(1):119–124. doi: 10.1007/s10143-017-0876-2. PMID: 28702847.
  5. Huang Y., Xu C., He M.et al. Saliva cortisol, melatonin levels and circadian rhythm alterations in Chinese primary school children with dyslexia. Medicine (Baltimore). 2020;99(6):e19098. doi: 10.1097/MD.0000000000019098. PMID: 32028434.
  6. Dolgikh G.T., Dolgikh T.A., Nilov A.I. et al. [Melatonin: uses in the elderly]. In: Kotel’nikov G.P., Bulgakova S.V. (eds.). Clinical and fundamental aspects of gerontology. Samara;2017:170–179. (In Russ.)
  7. Knyaz’kin I.V. [Extrapineal melatonin in accelerated and premature aging in rats]. Uspekhi gerontologii. 2008;21(1):80–82.(In Russ.)
  8. Fedorova E.A., Sufieva D.A., Grigor’ev I.P. et al. [Mast cells of the human pineal gland]. Uspekhi gerontologii.2018;31(4):484–489. (In Russ.)
  9. AnisimovV.N. [The effect of melatonin on the aging process]. In: Komarov F.I. et al. (eds.). Melatonin in health and disease. Moscow; 2004:223–236. (In Russ.)
  10. Zuev V.A., Trifonov N.I., Lin’kova N.S. et al. [Melatonin as a molecular marker of age-related pathology]. Uspekhi gerontologii.2017;30(1):62–69. (In Russ.)
  11. Tan D.X., Xu B., Zhou X., Reiter R.J. Pineal calcification, melatonin production, aging, associated health consequences and rejuvenation of the pineal gland. Molecules. 2018;23(2):301. doi: 10.3390/molecules23020301. PMID: 29385085.
  12. Raghuprasad M.S., Manivannan M. Volumetric and morphometric analy-sis of pineal and pituitary glands of an Indian inedial subject. Ann Neurosci. 2018;25(4):279–288. doi: 10.1159/000487067.PMID: 31000968.
  13. Han Q., Li Y., Wang J., Zhao X. Sex difference in the morphology of pineal gland in adults based on brain magnetic resonance imaging. J Craniofac Surg. 2018;29(5):e509–e513. doi: 10.1097/SCS.0000000000004558. PMID: 29608478.
  14. Gheban B.A., Rosca I.A., Crisan M. The morphological and functional characteristics of the pineal gland. Med Pharm Rep. 2019;92(3):226–234. doi: 10.15386/mpr-1235. PMID: 31460502.
  15. Gheban B.A., Colosi H.A., Gheban-Rosca I.A. et al. Age-related changes of the pineal gland in humans: a digital anatomo-histological morphometric study on autopsy cases with comparison to predigital-era studies. Medicina (Kaunas). 2021;57(4):383. doi: 10.3390/medicina57040383. PMID: 33921100.
  16. Popova A.A., Takmakov A.A. [Morfologiya epiphysis, histologystructure]. Luchshaya studencheskaya stat’ya 2019. 2019;211–214. (In Russ.)
  17. GorbachevV.I., BraginaN.V. [The blood-brain barrier from the position of an anesthesiologist-resuscitator. Literature review. Part 1]. Vestnik intensivnoi terapii imeni A.I. Saltanova. 2020;3:35–45. (InRuss.)
  18. Ivanov S.V. [Age morphology of the human pineal gland: an intravital study]. Uspekhi gerontologii. 2007;20(2):60–65.(In Russ.)
  19. Beker-Acay M., Turamanlar O., Horata E. et al. Assessment of pineal gland volume and calcification in healthy subjects: is it related to aging? J Belg Soc Radiol. 2016;100(1):13. doi: 10.5334/jbr-btr.892. PMID: 30038974.
  20. Takahashi T., Nakamura M., Sasabayashi D. et al. Reduced pineal gland vo-lume across the stages of schizophrenia. Schizophr Res. 2019;206:163–170. doi: 10.1016/j.schres.2018.11.032. PMID: 30527931.
  21. Bastos M.A.V.Jr., Oliveira Bastos P.R.H., Portella R.B. et al. Pineal gland and schizophrenia: A systematic review and meta-analysis. Psychoneuroendocrinology. 2019;104:100–114. doi: 10.1016/j.psyneuen.2019.02.024. PMID: 30831343.
  22. Takahashi T., Sasabayashi D., Yücel M. et al. Pineal gland volume in major depressive and bipolar disorders. Front Psychiatry. 2020;11:450. doi: 10.3389/fpsyt.2020.00450. PMID: 32528324.
  23. Matsuoka T., Imai A., Fujimoto H. et al. Reduced pineal volume in Alzheimer disease: a retrospective cross-sectional MR imaging study. Radiology. 2018;286(1):239–248. doi: 10.1148/radiol.2017170188. PMID: 28745939.
  24. Maruani A., Dumas G., Beggiato A. et al. Morning plasma melatonin differences in autism: beyond the impact of pineal gland volume. Front Psychiatry. 2019;10:11. doi: 10.3389/fpsyt.2019.00011. PMID: 30787884.
  25. Osborn A.G., Preece M.T. Intracranial cysts: radiologic-pathologic correlation and imaging approach. Radiology. 2006;239(3):650–664. doi: 10.1148/radiol.2393050823. PMID: 16714456.
  26. Görgülü F.F., Koç A.S. Is there any relationship between autism and pineal gland volume? Pol J Radiol. 2021;86:e225–e231. doi: 10.5114/pjr.2021.105689. PMID: 34093919.
  27. Takahashi T., Sasabayashi D., Takayanagi Y. et al. Potential contribution of pineal atrophy and pineal cysts toward vulnerability and clinical characteristics of psychosis. Neuroimage Clin. 2021;32:102805. doi: 10.1016/j.nicl.2021.102805. PMID: 34461434.
  28. Kurtulus Dereli A., Demırci G.N., Dodurga Y. et al. Evaluation of human pineal gland acetylserotonin O-methyltransferase immunoreactivity in suicide: а preliminary study. Med Sci Law. 2018;58(4):233–238. doi: 10.1177/0025802418797178. PMID: 30185109.
  29. Bosnjak J., Butkovic S.S., Miskov S. et al. Epilepsy in patients with pineal gland cyst. Clin Neurol Neurosurg. 2018;165:72–75. doi: 10.1016/j.clineuro.2017.12.025. PMID: 29324398.
  30. Atmaca M., Korucu T., Caglar Kilic M. et al. Pineal gland volumes are changed in patients with obsessive-compulsive personality disorder. J Clin Neurosci. 2019;70:221–225. doi: 10.1016/j.jocn.2019.07.047. PMID: 31455564.
  31. Abramov I.T., Pitskhelauri D.I., Serova N.K. [Pineal cyst]. Voprosy neirokhirurgii imeni N.N. Burdenko.2017;81(4):113–120. (In Russ.)
  32. Jussila M.P., Olsén P., Salokorpi N., Suo-Palosaari M. Follow-up of pineal cysts in children: is it necessary? Neuroradiology. 2017;59(12):1265–1273. doi: 10.1007/s00234-017-1926-8. PMID: 28942520.
  33. DelRosso L.M., Martin K., Bruni O., Ferri R. Sleep disorders in children with incidental pineal cyst on MRI: a pilot study. Sleep Med. 2018;48:127–130. doi: 10.1016/j.sleep.2018.05.003. PMID: 29906628.
  34. Trofimova T.N., Nazinkina Yu.V., Anan’eva N.I. et al. [Normal radiation anatomy of the brain (CT, MRI, ultrasound)]. Sankt-Peterburg; 2001. 51 p. (In Russ.)
  35. Lerner A.B., Case J., Takahashi Y. et al. Isolation of melatonin, the pineal gland factor that lightens melanocyteS1. J Am Chem Soc. 1958;(80)10:2587–2587.
  36. Syromyatnikova L.I., Spigina T.A., Shestakov V.V. [Circadian rhythm and depression in cardiac patients]. Psikhicheskie rasstroistva v obshchei meditsine. 2010;1:19–24. (In Russ.)
  37. Pu Y., Mahankali S., Hou J. et al. High prevalence of pineal cysts in healthy adults demonstrated by high-resolution, noncontrast brain MR imaging. Am J Neuroradiol. 2007;28(9):1706–1709. doi: 10.3174/ajnr.A0656. PMID: 17885233.
  38. Liu J., Clough S.J., Dubocovich M.L. Role of the MT1 and MT2 melatonin receptors in mediating depressive- and anxiety-like behaviors in C3H/HeN mice. Genes Brain Behav. 2017;16(5):546–553. doi: 10.1111/gbb.12369. PMID: 28160436.
  39. Bezuidenhout A.F., Kasper E.M., Baledent O. et al. Relationship between pineal cyst size and aqueductal CSF flow measured by phase contrast MRI. J Neurosurg Sci. 2021;65(1):63–68. doi: 10.23736/S0390-5616.18.04258-3. PMID: 29480683.
  40. Trofimova T.N., Totolyan N.A., Anan’eva N.I. [Radiation diagnosis of multiple sclerosis]. St. Peterburg; 2010. 125 p. (In Russ.)
  41. Pitskhelauri D.I., Konovalov A.N., Abramov I.T. et al. Pineal cyst-related aqueductal stenosis as cause of intractable headaches in nonhydrocephalic patients. World Neurosurg. 2019;123:e147–e155. doi: 10.1016/j.wneu. 2018.11.096. PMID: 30468924.
  42. Choque-Velasquez J., Colasanti R., Baluszek S. et al. Systematic review of pineal cysts surgery in pediatric patients. Childs Nerv Syst. 2020;36(12):2927–2938. doi: 10.1007/s00381-020-04792-3. PMID: 32691194.
  43. Eide P.K., Ringstad G. Increased pulsatile intracranial pressure in patients with symptomatic pineal cysts and magnetic resonance imaging biomarkers indicative of central venous hypertension. J Neurol Sci. 2016;367:247–255. doi: 10.1016/j.jns.2016.06.028. PMID: 27423599.
  44. Eide P.K., Pripp A.H., Ringstad G.A. Magnetic resonance imaging biomarkers indicate a central venous hypertension syndrome in patients with symptomatic pineal cysts. J Neurol Sci. 2016;363:207–216. doi: 10.1016/j.jns.2016.02.038.PMID: 27000252.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Brain MRI, FIESTA sequence. Midline sagittal section. Pineal gland is of normal shape and size.

Download (220KB)
3. Fig. 2. Brain MRI, FIESTA sequence. Midline sagittal section. Pineal gland is of normal size, with small cysts in its structure.

Download (84KB)
4. Fig. 3. Brain MRI, FIESTA sequence. Midline sagittal section. Pineal cyst over 10 mm in size, the cyst contains a protein mixture.

Download (76KB)

Copyright (c) 2022 Shilova A.V., Ananyeva N.I., Safonova N.Y., Lukina L.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies