Features of innate and adaptive immunity in patients with Parkinson's disease

Cover Page

Cite item

Full Text

Abstract

Introduction. T cells play a significant role in neuroinflammation in Parkinson's disease (PD). Gamma delta T cells are an under-researched 'minor' subpopulation of T cells. An assessment of the immune system in patients with PD, with a focus on γδТ cells, provides new data on the pathogenesis of neurodegenerative diseases.

The aim of the study was to examine the lymphocyte subpopulations, nonclassical γδТ cells, as well as cytokine production in patients with 3 stage PD complicated by motor fluctuations.

Materials and methods. We examined 20 patients with 3 stage PD receiving dopaminergic combination therapy (main group) and 20 age-matched patients with chronic cerebrovascular disease (comparison group). Considering the suspected role of chronic constipation in maintaining dysbiosis and chronic inflammation in patients with PD, the presence of constipation was an inclusion criterion for this study. The subpopulation profile of the peripheral blood lymphocytes was assessed using flow cytofluorometry, as well as cytokine levels using enzyme linked immunosorbent assay.

Results. It was found that the number of mature CD3+ T cells with αβ or γδ chains as the T-cell receptors (TCR) in the lymphocyte population was significantly lower in patients with PD — median 74% (57.3–83.5)) than in the comparison group (median 80% (73.0–86.0); р = 0.014. There was also a statistically significant reduction in the number of CD3+CD56+ natural killer (NK) T cells in the group of patients with PD vs. the comparison group — 4.7% (1.3–7.7) vs. 7.8% (0.8–24); р = 0.036. At the same time, the number of CD3CD56+ NK cells was significantly higher in the group of patients with PD (16.4% (9–34)) vs. the comparison group — 8.7% (5–15); р = 0.001. Moreover, the main group had a statistically significantly higher number of activated CD3CD8+ NK cells — 7% (4.5–13.5) vs. the comparison group — 3.5% (0.86–4.9); р < 0.001. Out of the total number of γδТ cells, the TCRγδ CD4+CD8 subpopulation was statistically smaller in the group of patients with PD — 13.6% (6.2–27.0) than in the comparison group — 29.8% (4.0–52.1); р = 0.016. The study of cytokine levels in the group of patients with PD showed a significant increase in the induced production of interleukin-1β (IL-1β), as well as a high (aberrant) spontaneous production of IL-10, which was 227.5 pg/ml in patients with PD when the normal range is 0–23 pg/ml. The correlation analysis showed that the TCRγδ CD4+CD8 subpopulation and cytokines in the group of patients with PD had a statistically significant (p = 0.048) negative correlation with the induced production of IL-10 (r = –0.745) and a significant (p = 0.042) positive correlation with the induced production of the pro-inflammatory cytokine IL-1β (r = 0.648). There was a trend towards increased spontaneous production of IL-10 (r = –0.602; p = 0.0506) as the level of the TCRγδ CD4+CD8 T helper cells decreased.

Conclusion. Changes were found in the blood of patients with PD, which indicate a chronic inflammatory process: increased number of CD3CD56+ NK cells, including activated CD3CD8+ cells, and increased production of pro-inflammatory cytokine IL-1β and anti-inflammatory cytokine IL-10. A decrease was found in the level of a minor subpopulation of γδT cells, TCRγδ CD4+CD8. The correlation found between this subpopulation and the production of pro- and anti-inflammatory cytokines indicates its role in regulation of chronic inflammation in PD.

About the authors

Igor V. Krasakov

A.M. Nikiforov Russian Center of Emergency and Radiation Medicine; S.M. Kirov Military Medical Academy

Author for correspondence.
Email: annaly-nevrologii@neurology.ru
ORCID iD: 0000-0001-6092-0659

Cand. Sci. (Med.), Head, Center of Extrapyramidal Disorders, assistant, Department of nervous diseases

Russian Federation, St. Petersburg; St. Petersburg

Nataliya I. Davydova

A.M. Nikiforov Russian Center of Emergency and Radiation Medicine

Email: annaly-nevrologii@neurology.ru
ORCID iD: 0000-0001-8644-905X

Cand. Sci. (Med.), senior researcher, Head, Clinical immunology laboratory

Russian Federation, St. Petersburg

Anastasiya A. Kalashnikova

A.M. Nikiforov Russian Center of Emergency and Radiation Medicine

Email: annaly-nevrologii@neurology.ru
ORCID iD: 0000-0002-5338-0866

Cand. Sci. (Biol.), senior researcher, Clinical immunology laboratory

Russian Federation, St. Petersburg

Igor V. Litvinenko

S.M. Kirov Military Medical Academy

Email: annaly-nevrologii@neurology.ru
ORCID iD: 0000-0001-8988-3011

D. Sci. (Med.), Prof., Head, Department of nervous diseases

Russian Federation, St. Petersburg

Sergey S. Aleksanin

A.M. Nikiforov Russian Center of Emergency and Radiation Medicine

Email: annaly-nevrologii@neurology.ru
ORCID iD: 0000-0001-6998-1669

D. Sci. (Med.), Prof., Director

Russian Federation, St. Petersburg

Nataliya V. Makarova

A.M. Nikiforov Russian Center of Emergency and Radiation Medicine

Email: annaly-nevrologii@neurology.ru
ORCID iD: 0000-0002-8697-0096

Cand. Sci. (Phys. and Math.), leading researcher, Head, Statistical analysis department, Medical Register, EMERCOM of Russia research laboratory of statistical analysis and forecasting

Russian Federation, St. Petersburg

References

  1. Litvinenko I.V., Krasakov I.V., Bisaga G.N. et al. Modern conception of the pathogenesis of neurodegenerative diseases and therapeutic strategy. Zh Nevrol Psikhiatr Im S S Korsakova. 2017;6-2:3–10. doi: 10.17116/jnevro2017117623-10. PMID: 28980606. (In Russ.)
  2. Członkowska A., Kurkowska-Jastrzebska I., Członkowski A. et al. Immune processes in the pathogenesis of Parkinson’s disease — a potential role for microglia and nitric oxide. Med Sci Monit. 2002;8(8):RA165–RA177. PMID: 12165754.
  3. Whitton P.S. Inflammation as a causative factor in the aetiology of Parkinson’s disease. Br J Pharmacol. 2007;150(8):963–976. doi: 10.1038/sj.bjp.0707167. PMID: 17339843.
  4. Chen Z., Chen S., Liu J. The role of T cells in the pathogenesis of Parkinson’s disease. Prog Neurobiol. 2018;169:1–23. doi: 10.1016/j.pneurobio.2018.08.002. PMID: 30114440.
  5. Yarilin A.A. [Immunologiya]. Moscow: GEOTAR-Media; 2010. (In Russ.)
  6. Janeway C.A. Jr., Travers P., Walport M., Shlomchik M.J. Immunobiology: The Immune System in Health and Disease. 5th edition. New York: Garland Science, 2001.
  7. Nizhegorodova D.B., Zafranskaya M.M. γδТ-Lymphocytes: general characteristics, subpopulation profile, biological role, and fuctional features. Meditsinskaya immunologiya. 2009;11(2–3):115–130. doi: 10.15789/1563-0625-2009-2-3-115-130. (In Russ.)
  8. Hedges J.F., Jutila M.A. Harnessing γδ T cells as natural immune modulators. Mucosal Vaccines. 2020;773–787. doi: 10.1016/B978-0-12-811924-2.00046-8.
  9. Saito H., Kranz D.M., Takagaki Y. et al. Complete primary structure of a heterodimeric T-cell receptor deduced from cDNA sequences. Nature. 1984;309(5971):757–62. doi: 10.1038/309757a0. PMID: 6330561.
  10. Chien Y.H., Iwashima M., Kaplan K.B. et al. A new T-cell receptor gene located within the alpha locus and expressed early in T-cell differentiation. Nature. 1987;327(6124):677–682. doi: 10.1038/327677a0. PMID: 2439914.
  11. Groh V., Porcelli S., Fabbi M. et al. Human lymphocytes bearing T cell receptor gamma/delta are phenotypically diverse and evenly distributed throughout the lymphoid system. J Exp Med. 1989;169(4):1277–1294. doi: 10.1084/jem.169.4.1277. PMID: 2564416.
  12. Parker C.M., Groh V., Band H. et al. Evidence for extrathymic changes in the T cell receptor gamma/delta repertoire. J Exp Med. 1990;171(5):1597–1612. doi: 10.1084/jem.171.5.1597. PMID: 2185330.
  13. McCarthy N.E., Hedin C.R., Sanders T.J. Azathioprine therapy selectively ablates human Vδ2+ T cells in Crohn’s disease. J Clin Invest. 2015;125(8):3215–3225. doi: 10.1172/JCI80840. PMID: 26168223.
  14. Paul S., Singh A.K., Lal S., Lal G. Phenotypic and functional plasticity of gamma-delta (γδ) T cells in inflammation and tolerance. Int Rev Immunol. 2014;33(6):537–558. doi: 10.3109/08830185.2013.863306. PMID: 24354324.
  15. Harly C., Guillaume Y., Nedellec S. Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human γδ T-cell subset. Blood. 2012;120(11):2269–2279. doi: 10.1182/blood-2012-05-430470. PMID: 22767497.
  16. Moore K.W., de Waal Malefyt R., Coffman R.L., O’Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol. 2001;19:683–765. doi: 10.1146/annurev.immunol.19.1.683. PMID: 11244051.
  17. Saraiva M., O’Garra A. The regulation of IL-10 production by immune cells. Nat Rev Immunol. 2010;10(3):170–181. doi: 10.1038/nri2711. PMID: 20154735.
  18. Gutierrez J., Raju S., Riley J.P., Boulis N.M. Introduction to neuropathic pain syndromes. Neurosurg Clin N Am. 2014;25(4):639–662. DOI: 10.1016/ j.nec.2014.06.002. PMID: 25240654.
  19. Tarazi F.I., Sahli Z.T., Wolny M., Mousa S.A. Emerging therapies for Parkinson’s disease: from bench to bedside. Pharmacol Ther. 2014;144(2):123–133. doi: 10.1016/j.pharmthera.2014.05.010. PMID: 24854598.
  20. Naundorf S., Schröder M., Höflich C. et al. IL-10 interferes directly with TCR-induced IFN-gamma but not IL-17 production in memory T cells. Eur J Immunol. 2009;39(4):1066–1077. doi: 10.1002/eji.200838773. PMID: 19266486.
  21. Sabat R., Grütz G., Warszawska K. Biology of interleukin-10. Cytokine Growth Factor Rev. 2010;21(5):331–344. doi: 10.1016/j.cytogfr.2010.09.002. PMID: 21115385.
  22. Moore T.A., Moore B.B., Newstead M.W., Standiford T.J. Gamma delta-T cells are critical for survival and early proinflammatory cytokine gene expression during murine Klebsiella pneumonia. J Immunol. 2000;165(5):2643–2650. doi: 10.4049/jimmunol.165.5.2643. PMID: 10946293.
  23. Toth B., Alexander M., Daniel T. et al. The role of gammadelta T cells in the regulation of neutrophil-mediated tissue damage after thermal injury. J Leukoc Biol. 2004;76(3):545–552. doi: 10.1189/jlb.0404219. PMID: 15197233.
  24. Koohsari H., Tamaoka M., Campbell H.R., Martin J.G. The role of gamma delta T cells in airway epithelial injury and bronchial responsiveness after chlorine gas exposure in mice. Respir Res. 2007;8(1):21. doi: 10.1186/1465-9921-8-21. PMID: 17343743.
  25. Balbi B., Valle M.T., Oddera S. et al. T-lymphocytes with gamma delta+ V delta 2+ antigen receptors are present in increased proportions in a fraction of patients with tuberculosis or with sarcoidosis. Am Rev Respir Dis. 1993;148 (6 Pt 1):1685–1690. doi: 10.1164/ajrccm/148.6_Pt_1.1685. PMID: 8256920.
  26. Bertotto A., Gerli R., Spinozzi F. et al. Lymphocytes bearing the gamma delta T cell receptor in acute Brucella melitensis infection. Eur J Immunol. 1993;23(5):1177–1180. doi: 10.1002/eji.1830230531. PMID: 8477812.
  27. Caldwell C.W., Everett E.D., McDonald G. et al. Apoptosis of gamma/delta T cells in human ehrlichiosis. Am J Clin Pathol. 1996;105(5):640–646. doi: 10.1093/ajcp/105.5.640. PMID: 8623774.
  28. Chien Y.H., Meyer C., Bonneville M. γδ T cells: first line of defense and beyond. Annu Rev Immunol. 2014;32:121–155. doi: 10.1146/annurev-immunol-032713-120216. PMID: 24387714.
  29. Stark M.A., Huo Y., Burcin T.L. et al. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity. 2005;22(3):285–294. doi: 10.1016/j.immuni.2005.01.011. PMID: 15780986.
  30. Wucherpfennig K.W., Newcombe J., Li H. et al. Gamma delta T-cell receptor repertoire in acute multiple sclerosis lesions. Proc Natl Acad Sci U S A. 1992;89(10):4588–4592. doi: 10.1073/pnas.89.10.4588. PMID: 1374907.
  31. Fiszer U., Mix E., Fredrikson S. et al. Gamma delta+ T cells are increased in patients with Parkinson’s disease. J Neurol Sci. 1994;121(1):39–45. doi: 10.1016/0022-510x(94)90154-6. PMID: 8133310.
  32. Kozlov I.G. [Microbiota, mucosal immunity and antibiotics: the fineness of the interaction]. RMJ. 2018;8(1):19–27. (In Russ.)
  33. Campos-Acuña J., Elgueta D., Pacheco R. T-cell-driven inflammation as a mediator of the gut-brain axis involved in Parkinson’s disease. Front Immunol. 2019;10:239. doi: 10.3389/fimmu.2019.00239. PMID: 30828335.
  34. Krasakov I.V., Litvinenko I.V. , Rodionov G.G. et al. Evaluation of gut microbiota in Parkinson’s disease using gas chromatography with mass spectrometric detection. Annals of clinical and experimental neurology. 2018;12(4):23–29. doi: 10.25692/ACEN.2018.4.3. (In Russ.)
  35. Fasano A., Bove F., Gabrielli M. et al. The role of small intestinal bacterial overgrowth in Parkinson’s disease. Mov Disord. 2013;28(9):1241–1249. doi: 10.1002/mds.25522. PMID: 23712625.
  36. Fasano A., Visanji N.P., Liu L.W. et al. Gastrointestinal dysfunction in Parkinson’s disease. Lancet Neurol. 2015;14(6):625–639. doi: 10.1016/S1474-4422(15)00007-1. PMID: 25987282.
  37. Maini Rekdal V., Bess E.N., Bisanz J.E. et al. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism. Science. 2019;364(6445):eaau6323. doi: 10.1126/science.aau6323. PMID: 31196984.
  38. Stacy M., Bowron A., Guttman M. et al. Identification of motor and nonmotor wearing-off in Parkinson’s disease: comparison of a patient questionnaire versus a clinician assessment. Mov Disord. 2005;20(6):726–733. doi: 10.1002/mds.20383. PMID: 15719426.
  39. Ivashkin V.T., Mayev I.V., Sheptulin A.A. Diagnostics and treatment of chronic constipation in adults: clinical guidelines of the Russian gastroenterological association. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2017;27(3):75–83. doi: 10.22416/1382-4376-2017-27-3-75-83. (In Russ.)
  40. Bocharov E.V., Kryzhanovsky G.N., Poleschuk V.V. Immune and antioxidant disorders in Parkinson’s disease. Patogenez. 2012;10(1):34–38. (In Russ.)
  41. Bouskra D., Brézillon C., Bérard M. et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature. 2008;456(7221):507–510. doi: 10.1038/nature07450. PMID: 18987631.
  42. Ubeda C., Pamer E.G. Antibiotics, microbiota, and immune defense. Trends Immunol. 2012;33(9):459–466. doi: 10.1016/j.it.2012.05.003. PMID: 22677185.
  43. Zhou C., Zhou X., He D. et al. Reduction of peripheral blood iNKT and γδT cells in patients with Parkinson’s disease: an observational study. Front Immunol. 2020;11:1329. doi: 10.3389/fimmu.2020.01329. PMID: 32670293.
  44. Lindestam Arlehamn C.S., Dhanwani R., Pham J. et al. α-Synuclein-specific T cell reactivity is associated with preclinical and early Parkinson’s disease. Nat Commun. 2020;11(1):1875. doi: 10.1038/s41467-020-15626-w. PMID: 32313102.

Copyright (c) 2022 Krasakov I.V., Davydova N.I., Kalashnikova A.A., Litvinenko I.V., Aleksanin S.S., Makarova N.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies